Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801955

RESUMO

The volatile organic sulfur compound allicin (diallyl thiosulfinate) is produced as a defense substance when garlic (Allium sativum) tissues are damaged, for example by the activities of pathogens or pests. Allicin gives crushed garlic its characteristic odor, is membrane permeable and readily taken up by exposed cells. It is a reactive thiol-trapping sulfur compound that S-thioallylates accessible cysteine residues in proteins and low molecular weight thiols including the cellular redox buffer glutathione (GSH) in eukaryotes and Gram-negative bacteria, as well as bacillithiol (BSH) in Gram-positive firmicutes. Allicin shows dose-dependent antimicrobial activity. At higher doses in eukaryotes allicin can induce apoptosis or necrosis, whereas lower, biocompatible amounts can modulate the activity of redox-sensitive proteins and affect cellular signaling. This review summarizes our current knowledge of how bacterial and eukaryotic cells are specifically affected by, and respond to, allicin.


Assuntos
Ácidos Sulfínicos/química , Ácidos Sulfínicos/metabolismo , Ácidos Sulfínicos/farmacologia , Antioxidantes/farmacologia , Bactérias/efeitos dos fármacos , Dissulfetos , Alho/química , Alho/metabolismo , Glutationa/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Oxirredução/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Compostos de Sulfidrila/metabolismo
2.
Antioxidants (Basel) ; 9(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158268

RESUMO

When cells of garlic (Allium sativum) are disrupted by wounding, they produce the defense substance allicin (diallylthiosulfinate). Allicin is an efficient thiol trap and readily passes through cell membranes into the cytosol, where it behaves as a redox toxin by oxidizing the cellular glutathione (GSH) pool and producing S-allylmercaptoglutathione (GSSA). An N-cyanosulfilimine analogue of allicin (CSA), which was predicted to have similar reactivity towards thiol groups but be more stable in storage, was synthesized and its properties investigated. Similarly to allicin, CSA was shown to inhibit the growth of various bacteria, a fungus (baker's yeast), and Arabidopsis roots. A chemogenetic screen showed that yeast mutants with compromised GSH levels and metabolism were hypersensitive to CSA. GSH reacted with CSA to produce allyltrisulfanylglutathione (GS3A), which was a white solid virtually insoluble in water. Yeast Δgsh1 mutants are unable to synthesize GSH because they lack the γ-glutamylcysteine synthetase (GSH1) gene, and they are unable to grow without GSH supplementation in the medium. GS3A in the growth medium supported the auxotrophic requirement for GSH in Δgsh1 mutants. This result suggests that GS3A is being reduced to GSH in vivo, possibly by the enzyme glutathione reductase (GR), which has been shown to accept GSSA as a substrate. The results suggest that CSA has a mode of action similar to allicin and is effective at similar concentrations.

3.
J Occup Health ; 58(5): 404-412, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27488038

RESUMO

OBJECTIVE: Working conditions, such as walking and standing on hard surfaces, can increase the development of musculoskeletal complaints. At the interface between flooring and musculoskeletal system, safety shoes may play an important role in the well-being of employees. The aim of this study was to evaluate the effects of different safety shoes on gait and plantar pressure distributions on industrial flooring. METHODS: Twenty automotive workers were individually fitted out with three different pairs of safety shoes ( "normal" shoes, cushioned shoes, and midfoot bearing shoes). They walked at a given speed of 1.5 m/s. The CUELA measuring system and shoe insoles were used for gait analysis and plantar pressure measurements, respectively. Statistical analysis was conducted by ANOVA analysis for repeated measures. RESULTS: Walking with cushioned safety shoes or a midfoot bearing safety shoe led to a significant decrease of the average trunk inclination (p<0.005). Furthermore, the average hip flexion angle decreased for cushioned shoes as well as midfoot bearing shoes (p<0.002). The range of motion of the knee joint increased for cushioned shoes. As expected, plantar pressure distributions varied significantly between cushioned or midfoot bearing shoes and shoes without ergonomic components. CONCLUSION: The overall function of safety shoes is the avoidance of injury in case of an industrial accident, but in addition, safety shoes could be a long-term preventive instrument for maintaining health of the employees' musculoskeletal system, as they are able to affect gait parameters. Further research needs to focus on safety shoes in working situations.


Assuntos
Traumatismos do Pé/prevenção & controle , Lesões do Quadril/prevenção & controle , Traumatismos Ocupacionais/prevenção & controle , Roupa de Proteção/normas , Sapatos/normas , Adulto , Análise de Variância , Automóveis , Fenômenos Biomecânicos , , Articulações do Pé/fisiologia , Marcha , Articulação do Quadril/fisiologia , Humanos , Indústrias , Articulação do Joelho/fisiologia , Masculino , Pessoa de Meia-Idade , Postura , Pressão , Caminhada , Suporte de Carga
4.
Biochim Biophys Acta ; 1850(4): 602-11, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25484312

RESUMO

BACKGROUND: Allicin (diallylthiosulfinate) is the major volatile- and antimicrobial substance produced by garlic cells upon wounding. We tested the hypothesis that allicin affects membrane function and investigated 1) betanine pigment leakage from beetroot (Beta vulgaris) tissue, 2) the semipermeability of the vacuolar membrane of Rhoeo discolor cells, 3) the electrophysiology of plasmalemma and tonoplast of Chara corallina and 4) electrical conductivity of artificial lipid bilayers. METHODS: Garlic juice and chemically synthesized allicin were used and betanine loss into the medium was monitored spectrophotometrically. Rhoeo cells were studied microscopically and Chara- and artificial membranes were patch clamped. RESULTS: Beet cell membranes were approximately 200-fold more sensitive to allicin on a mol-for-mol basis than to dimethyl sulfoxide (DMSO) and approximately 400-fold more sensitive to allicin than to ethanol. Allicin-treated Rhoeo discolor cells lost the ability to plasmolyse in an osmoticum, confirming that their membranes had lost semipermeability after allicin treatment. Furthermore, allicin and garlic juice diluted in artificial pond water caused an immediate strong depolarization, and a decrease in membrane resistance at the plasmalemma of Chara, and caused pore formation in the tonoplast and artificial lipid bilayers. CONCLUSIONS: Allicin increases the permeability of membranes. GENERAL SIGNIFICANCE: Since garlic is a common foodstuff the physiological effects of its constituents are important. Allicin's ability to permeabilize cell membranes may contribute to its antimicrobial activity independently of its activity as a thiol reagent.


Assuntos
Beta vulgaris/efeitos dos fármacos , Chara/efeitos dos fármacos , Commelinaceae/efeitos dos fármacos , Alho/química , Bicamadas Lipídicas/metabolismo , Ácidos Sulfínicos/farmacologia , Beta vulgaris/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Chara/metabolismo , Commelinaceae/metabolismo , Dimetil Sulfóxido/farmacologia , Dissulfetos , Pigmentos Biológicos/metabolismo , Ácidos Sulfínicos/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA