Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Cell Rep ; 43(5): 114167, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38691452

RESUMO

Polycomb (Pc) group proteins are transcriptional regulators with key roles in development, cell identity, and differentiation. Pc-bound chromatin regions form repressive domains that interact in 3D to assemble repressive nuclear compartments. Here, we use multiplexed chromatin imaging to investigate whether Pc compartments involve the clustering of multiple Pc domains during Drosophila development. Notably, 3D proximity between Pc targets is rare and involves predominantly pairwise interactions. These 3D proximities are particularly enhanced in segments where Pc genes are co-repressed. In addition, segment-specific expression of Hox Pc targets leads to their spatial segregation from Pc-repressed genes. Finally, non-Hox Pc targets are more proximal in regions where they are co-expressed. These results indicate that long-range Pc interactions are temporally and spatially regulated during differentiation and development but do not induce frequent clustering of multiple distant Pc genes.

2.
Methods Mol Biol ; 2784: 227-257, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502490

RESUMO

The simultaneous observation of three-dimensional (3D) chromatin structure and transcription in single cells is critical to understand how DNA is organized inside cells and how this organization influences or is affected by other processes, such as transcription. We have recently introduced an innovative technology known as Hi-M, which enables the sequential tagging, 3D visualization, and precise localization of multiple genomic DNA regions alongside RNA expression within individual cells. In this chapter, we present a comprehensive guide outlining the creation of probes, as well as sample preparation and labeling. Finally, we provide a step-by-step guide to conduct a complete Hi-M acquisition using our open-source software package, Qudi-HiM, which controls the robotic microscope handling the entire acquisition procedure.


Assuntos
Cromatina , Cromossomos , Cromatina/genética , Cromossomos/metabolismo , DNA/química , Conformação Molecular
3.
Genome Biol ; 25(1): 47, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351149

RESUMO

Genome-wide ensemble sequencing methods improved our understanding of chromatin organization in eukaryotes but lack the ability to capture single-cell heterogeneity and spatial organization. To overcome these limitations, new imaging-based methods have emerged, giving rise to the field of spatial genomics. Here, we present pyHiM, a user-friendly python toolbox specifically designed for the analysis of multiplexed DNA-FISH data and the reconstruction of chromatin traces in individual cells. pyHiM employs a modular architecture, allowing independent execution of analysis steps and customization according to sample specificity and computing resources. pyHiM aims to facilitate the democratization and standardization of spatial genomics analysis.


Assuntos
Genômica , Software , Genômica/métodos , Cromatina , Cromossomos , DNA
4.
Nat Commun ; 14(1): 6678, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865700

RESUMO

In mammals, insulators contribute to the regulation of loop extrusion to organize chromatin into topologically associating domains. In Drosophila the role of insulators in 3D genome organization is, however, under current debate. Here, we addressed this question by combining bioinformatics analysis and multiplexed chromatin imaging. We describe a class of Drosophila insulators enriched at regions forming preferential chromatin interactions genome-wide. Notably, most of these 3D interactions do not involve TAD borders. Multiplexed imaging shows that these interactions occur infrequently, and only rarely involve multiple genomic regions coalescing together in space in single cells. Finally, we show that non-border preferential 3D interactions enriched in this class of insulators are present before TADs and transcription during Drosophila development. Our results are inconsistent with insulators forming stable hubs in single cells, and instead suggest that they fine-tune existing 3D chromatin interactions, providing an additional regulatory layer for transcriptional regulation.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Cromatina/genética , Regulação da Expressão Gênica , Genoma , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mamíferos/genética
5.
Nat Commun ; 14(1): 5588, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696789

RESUMO

Many species, such as fish schools or bird flocks, rely on collective motion to forage, prey, or escape predators. Likewise, Myxococcus xanthus forages and moves collectively to prey and feed on other bacterial species. These activities require two distinct motility machines enabling adventurous (A) and social (S) gliding, however when and how these mechanisms are used has remained elusive. Here, we address this long-standing question by applying multiscale semantic cell tracking during predation. We show that: (1) foragers and swarms can comprise A- and S-motile cells, with single cells exchanging frequently between these groups; (2) A-motility is critical to ensure the directional movement of both foragers and swarms; (3) the combined action of A- and S-motile cells within swarms leads to increased predation efficiencies. These results challenge the notion that A- and S-motilities are exclusive to foragers and swarms, and show that these machines act synergistically to enhance predation efficiency.


Assuntos
Myxococcus xanthus , Comportamento Predatório , Animais , Rastreamento de Células , Comportamento Cooperativo , Movimento (Física)
6.
Curr Opin Genet Dev ; 79: 102032, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36893484

RESUMO

Eukaryotic genomes are organized in 3D in a multiscale manner, and different mechanisms acting at each of these scales can contribute to transcriptional regulation. However, the large single-cell variability in 3D chromatin structures represents a challenge to understand how transcription may be differentially regulated between cell types in a robust and efficient manner. Here, we describe the different mechanisms by which 3D chromatin structure was shown to contribute to cell-type-specific transcriptional regulation. Excitingly, several novel methodologies able to measure 3D chromatin conformation and transcription in single cells in their native tissue context, or to detect the dynamics of cis-regulatory interactions, are starting to allow quantitative dissection of chromatin structure noise and relate it to how transcription may be regulated between different cell types and cell states.


Assuntos
Cromatina , Regulação da Expressão Gênica , Cromatina/genética , Regulação da Expressão Gênica/genética , Eucariotos/genética , Genoma , Conformação Molecular
7.
Sci Adv ; 9(8): eabq0619, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36812310

RESUMO

The predatory deltaproteobacterium Myxococcus xanthus uses a helically-trafficked motor at bacterial focal-adhesion (bFA) sites to power gliding motility. Using total internal reflection fluorescence and force microscopies, we identify the von Willebrand A domain-containing outer-membrane (OM) lipoprotein CglB as an essential substratum-coupling adhesin of the gliding transducer (Glt) machinery at bFAs. Biochemical and genetic analyses reveal that CglB localizes to the cell surface independently of the Glt apparatus; once there, it is recruited by the OM module of the gliding machinery, a heteroligomeric complex containing the integral OM ß barrels GltA, GltB, and GltH, as well as the OM protein GltC and OM lipoprotein GltK. This Glt OM platform mediates the cell-surface accessibility and retention of CglB by the Glt apparatus. Together, these data suggest that the gliding complex promotes regulated surface exposure of CglB at bFAs, thus explaining the manner by which contractile forces exerted by inner-membrane motors are transduced across the cell envelope to the substratum.


Assuntos
Myxococcales , Myxococcales/metabolismo , Adesões Focais/metabolismo , Adesinas Bacterianas , Aderência Bacteriana , Lipoproteínas , Proteínas de Bactérias/metabolismo
8.
Nat Commun ; 13(1): 5375, 2022 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104317

RESUMO

The spatial organization of chromatin at the scale of topologically associating domains (TADs) and below displays large cell-to-cell variations. Up until now, how this heterogeneity in chromatin conformation is shaped by chromatin condensation, TAD insulation, and transcription has remained mostly elusive. Here, we used Hi-M, a multiplexed DNA-FISH imaging technique providing developmental timing and transcriptional status, to show that the emergence of TADs at the ensemble level partially segregates the conformational space explored by single nuclei during the early development of Drosophila embryos. Surprisingly, a substantial fraction of nuclei display strong insulation even before TADs emerge. Moreover, active transcription within a TAD leads to minor changes to the local inter- and intra-TAD chromatin conformation in single nuclei and only weakly affects insulation to the neighboring TAD. Overall, our results indicate that multiple parameters contribute to shaping the chromatin architecture of single nuclei at the TAD scale.


Assuntos
Cromatina , Drosophila , Animais , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA , Drosophila/genética , Hibridização in Situ Fluorescente
9.
Open Res Eur ; 2: 46, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37645324

RESUMO

Multiplexed sequential and combinatorial imaging enables the simultaneous detection of multiple biological molecules, e.g. proteins, DNA, or RNA, enabling single-cell spatial multi-omics measurements at sub-cellular resolution. Recently, we designed a multiplexed imaging approach (Hi-M) to study the spatial organization of chromatin in single cells. In order to enable Hi-M sequential imaging on custom microscope setups, we developed Qudi-HiM, a modular software package written in Python 3. Qudi-HiM contains modules to automate the robust acquisition of thousands of three-dimensional multicolor microscopy images, the handling of microfluidics devices, and the remote monitoring of ongoing acquisitions and real-time analysis. In addition, Qudi-HiM can be used as a stand-alone tool for other imaging modalities.

10.
Artigo em Inglês | MEDLINE | ID: mdl-34230036

RESUMO

Over the past two decades, it has become clear that the multiscale spatial and temporal organization of the genome has important implications for nuclear function. This review centers on insights gained from recent advances in light microscopy on our understanding of transcription. We discuss spatial and temporal aspects that shape nuclear order and their consequences on regulatory components, focusing on genomic scales most relevant to function. The emerging picture is that spatiotemporal constraints increase the complexity in transcriptional regulation, highlighting new challenges, such as uncertainty about how information travels from molecular factors through the genome and space to generate a functional output.


Assuntos
Núcleo Celular , Genoma , Núcleo Celular/genética , Regulação da Expressão Gênica , Genômica
11.
Elife ; 102021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34498586

RESUMO

Studies of bacterial communities, biofilms and microbiomes, are multiplying due to their impact on health and ecology. Live imaging of microbial communities requires new tools for the robust identification of bacterial cells in dense and often inter-species populations, sometimes over very large scales. Here, we developed MiSiC, a general deep-learning-based 2D segmentation method that automatically segments single bacteria in complex images of interacting bacterial communities with very little parameter adjustment, independent of the microscopy settings and imaging modality. Using a bacterial predator-prey interaction model, we demonstrate that MiSiC enables the analysis of interspecies interactions, resolving processes at subcellular scales and discriminating between species in millimeter size datasets. The simple implementation of MiSiC and the relatively low need in computing power make its use broadly accessible to fields interested in bacterial interactions and cell biology.


Assuntos
Fenômenos Fisiológicos Bacterianos , Aprendizado Profundo , Ensaios de Triagem em Larga Escala/métodos , Microbiota , Modelos Biológicos , Biofilmes , Microscopia/métodos , Especificidade da Espécie
12.
Nat Genet ; 53(4): 477-486, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33795867

RESUMO

Acquisition of cell fate is thought to rely on the specific interaction of remote cis-regulatory modules (CRMs), for example, enhancers and target promoters. However, the precise interplay between chromatin structure and gene expression is still unclear, particularly within multicellular developing organisms. In the present study, we employ Hi-M, a single-cell spatial genomics approach, to detect CRM-promoter looping interactions within topologically associating domains (TADs) during early Drosophila development. By comparing cis-regulatory loops in alternate cell types, we show that physical proximity does not necessarily instruct transcriptional states. Moreover, multi-way analyses reveal that multiple CRMs spatially coalesce to form hubs. Loops and CRM hubs are established early during development, before the emergence of TADs. Moreover, CRM hubs are formed, in part, via the action of the pioneer transcription factor Zelda and precede transcriptional activation. Our approach provides insight into the role of CRM-promoter interactions in defining transcriptional states, as well as distinct cell types.


Assuntos
Linhagem da Célula/genética , Cromatina/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Diferenciação Celular , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Embrião não Mamífero , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Genômica , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Análise de Célula Única , Fatores de Transcrição/classificação , Fatores de Transcrição/metabolismo , Transcrição Gênica
15.
Nat Protoc ; 16(3): 1600-1628, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33627844

RESUMO

Super-resolution microscopy techniques have pushed the limit of optical imaging to unprecedented spatial resolutions. However, one of the frontiers in nanoscopy is its application to intact living organisms. Here we describe the implementation and application of super-resolution single-particle tracking photoactivated localization microscopy (sptPALM) to probe single-molecule dynamics of membrane proteins in live roots of the model plant Arabidopsis thaliana. We first discuss the advantages and limitations of sptPALM for studying the diffusion properties of membrane proteins and compare this to fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS). We describe the technical details for handling and imaging the samples for sptPALM, with a particular emphasis on the specificity of imaging plant cells, such as their thick cell walls or high degree of autofluorescence. We then provide a practical guide from data collection to image analyses. In particular, we introduce our sptPALM_viewer software and describe how to install and use it for analyzing sptPALM experiments. Finally, we report an R statistical analysis pipeline to analyze and compare sptPALM experiments. Altogether, this protocol should enable plant researchers to perform sptPALM using a benchmarked reproducible protocol. Routinely, the procedure takes 3-4 h of imaging followed by 3-4 d of image processing and data analysis.


Assuntos
Proteínas de Membrana/metabolismo , Microscopia de Fluorescência/métodos , Imagem Individual de Molécula/métodos , Arabidopsis/metabolismo , Difusão , Recuperação de Fluorescência Após Fotodegradação/métodos , Proteínas de Membrana/isolamento & purificação , Imagem Óptica/métodos , Células Vegetais/química , Plantas/química , Plantas/metabolismo , Espectrometria de Fluorescência/métodos
16.
FEMS Microbiol Rev ; 45(2)2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33016325

RESUMO

The spatiotemporal regulation of gene expression plays an essential role in many biological processes. Recently, several imaging-based RNA labeling and detection methods, both in fixed and live cells, were developed and now enable the study of transcript abundance, localization and dynamics. Here, we review the main single-cell techniques for RNA visualization with fluorescence microscopy and describe their applications in bacteria.


Assuntos
Bactérias/ultraestrutura , Microscopia de Fluorescência , RNA Bacteriano/ultraestrutura , Imagem Óptica
17.
Curr Biol ; 30(23): 4654-4664.e4, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33035478

RESUMO

In the course of their growth and development, plants have to constantly perceive and react to their environment. This is achieved in cells by the coordination of complex combinatorial signaling networks. However, how signal integration and specificity are achieved in this context is unknown. With a focus on the hyperosmotic stimulus, we use live super-resolution light imaging methods to demonstrate that a Rho GTPase, Rho-of-Plant 6 (ROP6), forms stimuli-dependent nanodomains within the plasma membrane (PM). These nanodomains are necessary and sufficient to transduce production of reactive oxygen species (ROS) that act as secondary messengers and trigger several plant adaptive responses to osmotic constraints. Furthermore, osmotic signal triggers interaction between ROP6 and two NADPH oxidases that subsequently generate ROS. ROP6 nanoclustering is also needed for cell surface auxin signaling, but short-time auxin treatment does not induce ROS accumulation. We show that auxin-induced ROP6 nanodomains, unlike osmotically driven ROP6 clusters, do not recruit the NADPH oxidase, RBOHD. Together, our results suggest that Rho GTPase nano-partitioning at the PM ensures signal specificity downstream of independent stimuli.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Pressão Osmótica/fisiologia , Adaptação Fisiológica , Proteínas de Arabidopsis/genética , Membrana Celular/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , NADPH Oxidases/metabolismo , Osmose/fisiologia , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
18.
Nature ; 587(7834): 377-386, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32894860

RESUMO

Here we describe the LifeTime Initiative, which aims to track, understand and target human cells during the onset and progression of complex diseases, and to analyse their response to therapy at single-cell resolution. This mission will be implemented through the development, integration and application of single-cell multi-omics and imaging, artificial intelligence and patient-derived experimental disease models during the progression from health to disease. The analysis of large molecular and clinical datasets will identify molecular mechanisms, create predictive computational models of disease progression, and reveal new drug targets and therapies. The timely detection and interception of disease embedded in an ethical and patient-centred vision will be achieved through interactions across academia, hospitals, patient associations, health data management systems and industry. The application of this strategy to key medical challenges in cancer, neurological and neuropsychiatric disorders, and infectious, chronic inflammatory and cardiovascular diseases at the single-cell level will usher in cell-based interceptive medicine in Europe over the next decade.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Atenção à Saúde/métodos , Atenção à Saúde/tendências , Medicina/métodos , Medicina/tendências , Patologia , Análise de Célula Única , Inteligência Artificial , Atenção à Saúde/ética , Atenção à Saúde/normas , Diagnóstico Precoce , Educação Médica , Europa (Continente) , Feminino , Saúde , Humanos , Legislação Médica , Masculino , Medicina/normas
19.
J Cell Biol ; 219(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32744610

RESUMO

In budding yeast, the transcription factors SBF and MBF activate a large program of gene expression in late G1 phase that underlies commitment to cell division, termed Start. SBF/MBF are limiting with respect to target promoters in small G1 phase cells and accumulate as cells grow, raising the questions of how SBF/MBF are dynamically distributed across the G1/S regulon and how this impacts the Start transition. Super-resolution Photo-Activatable Localization Microscopy (PALM) mapping of the static positions of SBF/MBF subunits in fixed cells revealed each transcription factor was organized into discrete clusters containing approximately eight copies regardless of cell size and that the total number of clusters increased as cells grew through G1 phase. Stochastic modeling using reasonable biophysical parameters recapitulated growth-dependent SBF/MBF clustering and predicted TF dynamics that were confirmed in live cell PALM experiments. This spatio-temporal organization of SBF/MBF may help coordinate activation of G1/S regulon and the Start transition.


Assuntos
Fase G1/genética , Fase S/genética , Fatores de Transcrição/genética , Divisão Celular/genética , Regulação Fúngica da Expressão Gênica/genética , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética
20.
Mol Cell ; 79(2): 293-303.e4, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32679076

RESUMO

Liquid-liquid phase-separated (LLPS) states are key to compartmentalizing components in the absence of membranes; however, it is unclear whether LLPS condensates are actively and specifically organized in the subcellular space and by which mechanisms. Here, we address this question by focusing on the ParABS DNA segregation system, composed of a centromeric-like sequence (parS), a DNA-binding protein (ParB), and a motor (ParA). We show that parS and ParB associate to form nanometer-sized, round condensates. ParB molecules diffuse rapidly within the nucleoid volume but display confined motions when trapped inside ParB condensates. Single ParB molecules are able to rapidly diffuse between different condensates, and nucleation is strongly favored by parS. Notably, the ParA motor is required to prevent the fusion of ParB condensates. These results describe a novel active mechanism that splits, segregates, and localizes non-canonical LLPS condensates in the subcellular space.


Assuntos
Trifosfato de Adenosina/fisiologia , Fenômenos Fisiológicos Bacterianos , Proteínas de Escherichia coli/fisiologia , Transição de Fase , DNA Primase/fisiologia , DNA Bacteriano , Microscopia/métodos , Nanopartículas , Imagem Individual de Molécula/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA