Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 9530, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681065

RESUMO

Geopolymer (GP) was invented to replace concrete, but its heat curing requirement hinders extensive use in real-world construction. Past studies have tested several methods of heat curing. However, the conventional heat curing process (using an oven) is still required for GP to develop good strength on the laboratory scale. This study introduces a new heat curing method for GP based on an electromagnetic field (EMF)generator and a ferromagnetic material. Waste iron powder (WIP) was used as the ferromagnetic material mixed with the fly ash-based GP to generate heat through induction. The sample was cured at 1.18 kW with 150-200 kHz of EMF generator for 15 min. The results showed that 5% of the WIP mixed sample gained compressive and flexural strength at 28 days more than the control (oven-cured). Compressive and flexural strengths of 76.8 MPa and 11.3 MPa were obtained, respectively. In addition, heat induction enhanced the densification and geopolymerization in the GP matrix following SEM and XRD results. This alternative method of heat curing accelerated the formation of the GP matrix, reduced curing time, and increased strength. Moreover, this EMF curing method can save 99.70% of the energy consumed compared to the conventional heat curing method.

2.
Materials (Basel) ; 14(10)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066254

RESUMO

Geopolymer (GP) has been applied as an environmentally-friendly construction material in recent years. Many pozzolanic wastes, such as fly ash (FA) and bottom ash, are commonly used as source materials for synthesizing geopolymer. Nonetheless, many non-pozzolanic wastes are often applied in the field of civil engineering, including waste iron powder (WIP). WIPs are massively produced as by-products from iron and steel industries, and the production rate increases every year. As an iron-based material, WIP has properties of heat induction and restoration, which can enhance the heat curing process of GP. Therefore, this study aimed to utilize WIP in high-calcium FA geopolymer to develop a new type of geopolymer and examine its properties compared to the conventional geopolymer. Scanning electron microscopy and X-ray diffraction were performed on the geopolymers. Mechanical properties, including compressive strength and flexural strength, were also determined. In addition, setting time and temperature monitoring during the heat curing process were carried out. The results indicated that the addition of WIP in FA geopolymer decreased the compressive strength, owing to the formation of tetrahydroxoferrate (II) sodium or Na2[Fe(OH)4]. However, a significant increase in the flexural strength of GP with WIP addition was detected. A flexural strength of 8.5 MPa was achieved by a 28-day sample with 20% of WIP addition, nearly three times higher than that of control.

3.
Materials (Basel) ; 14(8)2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33918054

RESUMO

With a lack of standard lateritic soil for use in road construction, suitable economical and sustainable soil-stabilization techniques are in demand. This study aimed to examine flue gas desulfurization (FGD) gypsum, a by-product of coal power plants, for use in soil-cement stabilization, specifically for ability to strengthen poor high-clay, lateritic soil but with a lower cement content. A series of compaction tests and unconfined compressive strength (UCS) tests were performed in conjunction with scanning electron microscope (SEM) analyses. Therefore, the strength development and the role of FGD gypsum in the soil-cement-FGD gypsum mixtures with varying cement and FGD gypsum contents were characterized in this study. The study results showed that adding FGD gypsum can enhance the strength of the stabilized substandard lateritic soil. Extra FGD gypsum added to the cement hydration system provided more sulfate ions, leading to the formation of ettringite and monosulfate, which are the hardening cementitious products from the cement hydration reaction. Both products contributed to the strength gain of the soil-cement-FGD gypsum material. However, the strength can be reduced when too much FGD gypsum is added because the undissolved gypsum has a weak structure. Examinations of FGD gypsum in the soil-cement-FGD gypsum mixtures by SEM confirmed that adding FGD gypsum can reduce the cement content in a soil-cement mix to achieve a given UCS value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA