Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(21): e2319652121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739805

RESUMO

The last glacial period was punctuated by cold intervals in the North Atlantic region that culminated in extensive iceberg discharge events. These cold intervals, known as Heinrich Stadials, are associated with abrupt climate shifts worldwide. Here, we present CO2 measurements from the West Antarctic Ice Sheet Divide ice core across Heinrich Stadials 2 to 5 at decadal-scale resolution. Our results reveal multi-decadal-scale jumps in atmospheric CO2 concentrations within each Heinrich Stadial. The largest magnitude of change (14.0 ± 0.8 ppm within 55 ± 10 y) occurred during Heinrich Stadial 4. Abrupt rises in atmospheric CO2 are concurrent with jumps in atmospheric CH4 and abrupt changes in the water isotopologs in multiple Antarctic ice cores, the latter of which suggest rapid warming of both Antarctica and Southern Ocean vapor source regions. The synchroneity of these rapid shifts points to wind-driven upwelling of relatively warm, carbon-rich waters in the Southern Ocean, likely linked to a poleward intensification of the Southern Hemisphere westerly winds. Using an isotope-enabled atmospheric circulation model, we show that observed changes in Antarctic water isotopologs can be explained by abrupt and widespread Southern Ocean warming. Our work presents evidence for a multi-decadal- to century-scale response of the Southern Ocean to changes in atmospheric circulation, demonstrating the potential for dynamic changes in Southern Ocean biogeochemistry and circulation on human timescales. Furthermore, it suggests that anthropogenic CO2 uptake in the Southern Ocean may weaken with poleward strengthening westerlies today and into the future.

2.
Semin Thromb Hemost ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38547918

RESUMO

Inflammation contributes to the development of thrombosis, but the mechanistic basis for this association remains poorly understood. Innate immune responses and coagulation pathways are activated in parallel following infection or injury, and represent an important host defense mechanism to limit pathogen spread in the bloodstream. However, dysregulated proinflammatory activity is implicated in the progression of venous thromboembolism and arterial thrombosis. In this review, we focus on the role of myeloid cells in propagating thromboinflammation in acute inflammatory conditions, such as sepsis and coronavirus disease 2019 (COVID-19), and chronic inflammatory conditions, such as obesity, atherosclerosis, and inflammatory bowel disease. Myeloid cells are considered key drivers of thromboinflammation via upregulated tissue factor activity, formation of neutrophil extracellular traps (NETs), contact pathway activation, and aberrant coagulation factor-mediated protease-activated receptor (PAR) signaling. We discuss how strategies to target the intersection between myeloid cell-mediated inflammation and activation of blood coagulation represent an exciting new approach to combat immunothrombosis. Specifically, repurposed anti-inflammatory drugs, immunometabolic regulators, and NETosis inhibitors present opportunities that have the potential to dampen immunothrombotic activity without interfering with hemostasis. Such therapies could have far-reaching benefits for patient care across many thromboinflammatory conditions.

3.
J Thromb Haemost ; 21(12): 3342-3353, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37391097

RESUMO

Blood coagulation is initiated in response to blood vessel injury or proinflammatory stimuli, which activate coagulation factors to coordinate complex biochemical and cellular responses necessary for clot formation. In addition to these critical physiologic functions, plasma protein factors activated during coagulation mediate a spectrum of signaling responses via receptor-binding interactions on different cell types. In this review, we describe examples and mechanisms of coagulation factor signaling. We detail the molecular basis for cell signaling mediated by coagulation factor proteases via the protease-activated receptor family, considering new insights into the role of protease-specific cleavage sites, cofactor and coreceptor interactions, and distinct signaling intermediate interactions in shaping protease-activated receptor signaling diversity. Moreover, we discuss examples of how injury-dependent conformational activation of other coagulation proteins, such as fibrin(ogen) and von Willebrand factor, decrypts their signaling potential, unlocking their capacity to contribute to aberrant proinflammatory signaling. Finally, we consider the role of coagulation factor signaling in disease development and the status of pharmacologic approaches to either attenuate or enhance coagulation factor signaling for therapeutic benefit, emphasizing new approaches to inhibit deleterious coagulation factor signaling without impacting hemostatic activity.


Assuntos
Fármacos Hematológicos , Trombina , Humanos , Trombina/metabolismo , Fatores de Coagulação Sanguínea , Coagulação Sanguínea , Fator de von Willebrand/metabolismo , Receptores Ativados por Proteinase
4.
Sci Data ; 9(1): 353, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729164

RESUMO

The National Ecological Observatory Network (NEON) provides open-access measurements of stable isotope ratios in atmospheric water vapor (δ2H, δ18O) and carbon dioxide (δ13C) at different tower heights, as well as aggregated biweekly precipitation samples (δ2H, δ18O) across the United States. These measurements were used to create the NEON Daily Isotopic Composition of Environmental Exchanges (NEON-DICEE) dataset estimating precipitation (P; δ2H, δ18O), evapotranspiration (ET; δ2H, δ18O), and net ecosystem exchange (NEE; δ13C) isotope ratios. Statistically downscaled precipitation datasets were generated to be consistent with the estimated covariance between isotope ratios and precipitation amounts at daily time scales. Isotope ratios in ET and NEE fluxes were estimated using a mixing-model approach with calibrated NEON tower measurements. NEON-DICEE is publicly available on HydroShare and can be reproduced or modified to fit user specific applications or include additional NEON data records as they become available. The NEON-DICEE dataset can facilitate understanding of terrestrial ecosystem processes through their incorporation into environmental investigations that require daily δ2H, δ18O, and δ13C flux data.

5.
Nat Commun ; 13(1): 2686, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35562340

RESUMO

Atmospheric humidity and soil moisture in the Amazon forest are tightly coupled to the region's water balance, or the difference between two moisture fluxes, evapotranspiration minus precipitation (ET-P). However, large and poorly characterized uncertainties in both fluxes, and in their difference, make it challenging to evaluate spatiotemporal variations of water balance and its dependence on ET or P. Here, we show that satellite observations of the HDO/H2O ratio of water vapor are sensitive to spatiotemporal variations of ET-P over the Amazon. When calibrated by basin-scale and mass-balance estimates of ET-P derived from terrestrial water storage and river discharge measurements, the isotopic data demonstrate that rainfall controls wet Amazon water balance variability, but ET becomes important in regulating water balance and its variability in the dry Amazon. Changes in the drivers of ET, such as above ground biomass, could therefore have a larger impact on soil moisture and humidity in the dry (southern and eastern) Amazon relative to the wet Amazon.


Assuntos
Florestas , Vapor , Isótopos/análise , Rios , Solo
7.
Sci Data ; 6: 180302, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30667381

RESUMO

The isotopic composition of water vapour provides integrated perspectives on the hydrological histories of air masses and has been widely used for tracing physical processes in hydrological and climatic studies. Over the last two decades, the infrared laser spectroscopy technique has been used to measure the isotopic composition of water vapour near the Earth's surface. Here, we have assembled a global database of high temporal resolution stable water vapour isotope ratios (δ18O and δD) observed using this measurement technique. As of March 2018, the database includes data collected at 35 sites in 15 Köppen climate zones from the years 2004 to 2017. The key variables in each dataset are hourly values of δ18O and δD in atmospheric water vapour. To support interpretation of the isotopologue data, synchronized time series of standard meteorological variables from in situ observations and ERA5 reanalyses are also provided. This database is intended to serve as a centralized platform allowing researchers to share their vapour isotope datasets, thus facilitating investigations that transcend disciplinary and geographic boundaries.

8.
J Geophys Res Atmos ; 123(12): 6423-6442, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-30381797

RESUMO

Atmospheric rivers are one of the major causes of extreme precipitation and flooding in many regions around the world, and have been found to contribute substantially to global poleward moisture transport. However, the evaporative origin of the moisture in atmospheric rivers remains unclear, at least on climatological time-scales. Here we use the water tracer and water isotope-enabled CAM5 model to examine the moisture sources of atmospheric rivers that impact the West Coast of the United States. The climatological distribution of moisture sources is determined for both the modern-era and for 2100 under an RCP8.5 scenario. It is found that 33 to 53 % of the precipitable water over the West Coast of the United States originates from the Northeast Pacific, in particular the midlatitudes and subtropics, although in JJA more moisture is recycled from continental regions. It is also found that although atmospheric rivers are at least 70 % Northeast Pacific moisture, a significant amount of the moisture is derived from tropical latitudes (>15 % from south of 20° N). It is found that in the warmer 2100 climate there is a 39 % increase in the magnitude of ARs. In this future epoch, moisture is transported from more remote regions for all seasons and for both atmospheric rivers and the average climatology. To provide future observational evidence that this model result is robust, it is shown that water isotopes provide an observational constraint on the moisture transport pathways, and thus the possibility to observe changes in moisture source.

9.
J Geophys Res Atmos ; 123(14): 7254-7270, 2018 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-30467529

RESUMO

General circulation models (GCMs) predict that the global hydrological cycle will change in response to anthropogenic warming. However, these predictions remain uncertain, in particular for precipitation [IPCC, 2013]. Held and Soden [2006] suggest that as lower-tropospheric water vapor concentration increases in a warming climate, the atmospheric circulation and convective mass fluxes will weaken. Unfortunately, this process is difficult to constrain, as convective mass fluxes are poorly observed and incompletely simulated in GCMs. Here, we demonstrate that stable hydrogen isotope ratios in tropical atmospheric water vapor can trace changes in temperature, atmospheric circulation and convective mass flux in a warming world. We evaluate changes in temperature, the distribution of water vapor, vertical velocity (ω) and advection, and water isotopes in vapor (δD V ) in water isotopeenabled GCM experiments for modern vs. high CO 2 atmospheres to identify spatial patterns of circulation change over the tropical Pacific. We find that slowing circulation in the tropical Pacific moistens the lower troposphere and weakens convective mass flux, both of which impact the δD of water vapor in the mid-troposphere. Our findings constitute a critical demonstration of how water isotope ratios in the tropical Pacific respond to changes in radiative forcing and atmospheric warming. Moreover, as changes in δD V can be observed by satellites, our results develop new metrics for the detection of global warming impacts to the hydrological cycle and, specifically, the strength of the Walker Circulation.

10.
Mol Microbiol ; 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29644746

RESUMO

The PhoPR-mediated response to phosphate limitation (PHO response) in Bacillus subtilis subsp subtilis is amplified and maintained by reducing the level of Lipid VG composed of poly(glycerol phosphate), a wall teichoic acid (WTA) biosynthetic intermediate that inhibits PhoR autokinase activity. However, the reduction in Lipid VG level is effected by activated PhoP∼P, raising the question of how the PHO response is first initiated. Furthermore, that WTA is composed of poly(ribitol phosphate) in Bacillus subtilis subsp spizizenii prompted an investigation of how the PHO response is regulated in that bacterium. We report that the PHO responses of B. subtilis subsp subtilis and subsp spizizenii are distinct. The PhoR kinases of the two B. subtilis subspecies are functionally equivalent and are activated either by the TagA/TarA or TagB/TarB enzyme product. However, they are inhibited by Lipid VG composed of poly(glycerol phosphate) but not by Lipid VR composed of poly(ribitol phosphate). Therefore, the distinctive PHO responses of these B. subtilis subspecies stem from the differential sensitivity of PhoR kinases to the polyol composition of Lipid V and from the genomic organization of WTA biosynthetic genes and the regulation of their expression.

11.
Paleoceanography ; Volume 32(Iss 5): 484-497, 2017 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32020985

RESUMO

The relationship between salinity and the stable oxygen isotope ratio of seawater (δ18Osw) is of utmost importance to the quantitative reconstruction of past changes in salinity from δ18O values of marine carbonates. This relationship is often considered to be uniform across water masses, but the constancy of the δ18Osw-salinity relationship across space and time remains uncertain, as δ18Osw responds to varying atmospheric vapor sources and pathways, while salinity does not. Here we present new δ18Osw-salinity data from sites spanning the tropical Pacific Ocean. New data from Palau, Papua New Guinea, Kiritimati, and Galápagos show slopes ranging from 0.09 ‰/psu in the Galápagos to 0.32‰/psu in Palau. The slope of the δ18Osw-salinity relationship is higher in the western tropical Pacific versus the eastern tropical Pacific in observations and in two isotope-enabled climate models. A comparison of δ18Osw-salinity relationships derived from short-term spatial surveys and multi-year time series at Papua New Guinea and Galápagos suggests spatial relationships can be substituted for temporal relationships at these sites, at least within the time period of the investigation. However, the δ18Osw-salinity relationship varied temporally at Palau, likely in response to water mass changes associated with interannual El Niño-Southern Oscillation (ENSO) variability, suggesting nonstationarity in this local δ18Osw-salinity relationship. Applying local δ18Osw-salinity relationships in a coral δ18O forward model shows that using a constant, basin-wide δ18Osw-salinity slope can both overestimate and underestimate the contribution of δ18Osw to carbonate δ18O variance at individual sites in the western tropical Pacific.

12.
Sci Adv ; 2(4): e1501704, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27386509

RESUMO

Despite rapid melting in the coastal regions of the Greenland Ice Sheet, a significant area (~40%) of the ice sheet rarely experiences surface melting. In these regions, the controls on annual accumulation are poorly constrained owing to surface conditions (for example, surface clouds, blowing snow, and surface inversions), which render moisture flux estimates from myriad approaches (that is, eddy covariance, remote sensing, and direct observations) highly uncertain. Accumulation is partially determined by the temperature dependence of saturation vapor pressure, which influences the maximum humidity of air parcels reaching the ice sheet interior. However, independent proxies for surface temperature and accumulation from ice cores show that the response of accumulation to temperature is variable and not generally consistent with a purely thermodynamic control. Using three years of stable water vapor isotope profiles from a high altitude site on the Greenland Ice Sheet, we show that as the boundary layer becomes increasingly stable, a decoupling between the ice sheet and atmosphere occurs. The limited interaction between the ice sheet surface and free tropospheric air reduces the capacity for surface condensation to achieve the rate set by the humidity of the air parcels reaching interior Greenland. The isolation of the surface also acts to recycle sublimated moisture by recondensing it onto fog particles, which returns the moisture back to the surface through gravitational settling. The observations highlight a unique mechanism by which ice sheet mass is conserved, which has implications for understanding both past and future changes in accumulation rate and the isotopic signal in ice cores from Greenland.


Assuntos
Atmosfera , Aquecimento Global , Camada de Gelo , Movimentos da Água , Congelamento , Groenlândia , Neve , Temperatura
13.
Science ; 349(6244): 175-7, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26160944

RESUMO

Continental precipitation not routed to the oceans as runoff returns to the atmosphere as evapotranspiration. Partitioning this evapotranspiration flux into interception, transpiration, soil evaporation, and surface water evaporation is difficult using traditional hydrological methods, yet critical for understanding the water cycle and linked ecological processes. We combined two large-scale flux-partitioning approaches to quantify evapotranspiration subcomponents and the hydrologic connectivity of bound, plant-available soil waters with more mobile surface waters. Globally, transpiration is 64 ± 13% (mean ± 1 standard deviation) of evapotranspiration, and 65 ± 26% of evaporation originates from soils and not surface waters. We estimate that 38 ± 28% of surface water is derived from the plant-accessed soil water pool. This limited connectivity between soil and surface waters fundamentally structures the physical and biogeochemical interactions of water transiting through catchments.

14.
J Bacteriol ; 197(8): 1492-506, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25666134

RESUMO

UNLABELLED: The PhoPR two-component signal transduction system controls one of three responses activated by Bacillus subtilis to adapt to phosphate-limiting conditions (PHO response). The response involves the production of enzymes and transporters that scavenge for phosphate in the environment and assimilate it into the cell. However, in B. subtilis and some other Firmicutes bacteria, cell wall metabolism is also part of the PHO response due to the high phosphate content of the teichoic acids attached either to peptidoglycan (wall teichoic acid) or to the cytoplasmic membrane (lipoteichoic acid). Prompted by our observation that the phosphorylated WalR (WalR∼P) response regulator binds to more chromosomal loci than are revealed by transcriptome analysis, we established the PhoP∼P bindome in phosphate-limited cells. Here, we show that PhoP∼P binds to the chromosome at 25 loci: 12 are within the promoters of previously identified PhoPR regulon genes, while 13 are newly identified. We extend the role of PhoPR in cell wall metabolism showing that PhoP∼P binds to the promoters of four cell wall-associated operons (ggaAB, yqgS, wapA, and dacA), although none show PhoPR-dependent expression under the conditions of this study. We also show that positive autoregulation of phoPR expression and full induction of the PHO response upon phosphate limitation require PhoP∼P binding to the 3' end of the phoPR operon. IMPORTANCE: The PhoPR two-component system controls one of three responses mounted by B. subtilis to adapt to phosphate limitation (PHO response). Here, establishment of the phosphorylated PhoP (PhoP∼P) bindome enhances our understanding of the PHO response in two important ways. First, PhoPR plays a more extensive role in adaptation to phosphate-limiting conditions than was deduced from transcriptome analyses. Among 13 newly identified binding sites, 4 are cell wall associated (ggaAB, yqgS, wapA, and dacA), revealing that PhoPR has an extended involvement in cell wall metabolism. Second, amplification of the PHO response must occur by a novel mechanism since positive autoregulation of phoPR expression requires PhoP∼P binding to the 3' end of the operon.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo , Genoma Bacteriano , Fosfatos/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Dados de Sequência Molecular , Óperon , Fosforilação , Ligação Proteica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo
15.
Mol Microbiol ; 94(6): 1242-59, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25315493

RESUMO

The PhoPR two-component signal transduction system controls one of the major responses to phosphate limitation in Bacillus subtilis. When activated it directs expression of phosphate scavenging enzymes, lowers synthesis of the phosphate-rich wall teichoic acid (WTA) and initiates synthesis of teichuronic acid, a non-phosphate containing replacement anionic polymer. Despite extensive knowledge of this response, the signal to which PhoR responds has not been identified. Here we report that one of the main functions of the PhoPR two-component system in B. subtilis is to monitor WTA metabolism. PhoR autokinase activity is controlled by the level of an intermediate in WTA synthesis that is sensed through the intracellular PAS domain. The pool of this intermediate generated by WTA synthesis in cells growing under phosphate-replete conditions is sufficient to inhibit PhoR autokinase activity. However WTA synthesis is lowered upon phosphate limitation by the combined effects of PhoP ∼ P-mediated activation of tuaA-H transcription and repression of tagAB. These transcriptional changes combine to lower the level of the inhibitory WTA metabolite thereby increasing PhoR autokinase activity. This amplifies the PHO response with full induction being achieved ∼ 90 min after the onset of phosphate limitation.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Fosfatos/metabolismo , Ácidos Teicoicos/metabolismo , Alcanos/farmacologia , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Fosforilação , Regiões Promotoras Genéticas , Transdução de Sinais
16.
J Bacteriol ; 196(2): 237-47, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24163346

RESUMO

The Bacillus subtilis cell wall is a dynamic structure, composed of peptidoglycan and teichoic acid, that is continually remodeled during growth. Remodeling is effected by the combined activities of penicillin binding proteins and autolysins that participate in the synthesis and turnover of peptidoglycan, respectively. It has been established that one or the other of the CwlO and LytE D,L-endopeptidase-type autolysins is essential for cell viability, a requirement that is fulfilled by coordinate control of their expression by WalRK and SigI RsgI. Here we report on the regulation of cwlO expression. The cwlO transcript is very unstable, with its degradation initiated by RNase Y cleavage within the 187-nucleotide leader sequence. An antisense cwlO transcript of heterogeneous length is expressed from a SigB promoter that has the potential to control cellular levels of cwlO RNA and protein under stress conditions. We discuss how a multiplicity of regulatory mechanisms makes CwlO expression and activity responsive to the prevailing growth conditions.


Assuntos
Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Endopeptidases/biossíntese , N-Acetil-Muramil-L-Alanina Amidase/biossíntese , Estabilidade de RNA , RNA Mensageiro/metabolismo , Sequência de Bases , Endopeptidases/genética , Dados de Sequência Molecular , N-Acetil-Muramil-L-Alanina Amidase/genética , Conformação de Ácido Nucleico , RNA Antissenso/biossíntese , RNA Bacteriano/metabolismo , Ribonucleases/metabolismo
17.
Mol Microbiol ; 87(1): 180-95, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23199363

RESUMO

The WalRK (YycFG) two-component system co-ordinates cell wall metabolism with growth by regulating expression of autolysins and proteins that modulate autolysin activity. Here we extend its role in cell wall metabolism by showing that WalR binds to 22 chromosomal loci in vivo. Among the newly identified genes of the WalRK bindome are those that encode the wall-associated protein WapA, the penicillin binding proteins PbpH and Pbp5, the minor teichoic acid synthetic enzymes GgaAB and the regulators σ(I) RsgI. The putative WalR binding sequence at many newly identified binding loci deviates from the previously defined consensus. Moreover, expression of many newly identified operons is controlled by multiple regulators. An unusual feature is that WalR binds to an extended DNA region spanning multiple open reading frames at some loci. WalRK directly activates expression of the sigIrsgI operon from a newly identified σ(A) promoter and represses expression from the previously identified σ(I) promoter. We propose that this regulatory link between WalRK and σ(I) RsgI expression ensures that the endopeptidase requirement (CwlO or LytE) for cell viability is fulfilled during growth and under stress conditions. Thus the WalRK and σ(I) RsgI regulatory systems cooperate to control cell wall metabolism in growing and stressed cells.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/biossíntese , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Sequência de Bases , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Regiões Promotoras Genéticas , Ligação Proteica , Análise de Sequência de DNA , Fator sigma/metabolismo , Transcrição Gênica , Resistência beta-Lactâmica/genética
18.
Proc Natl Acad Sci U S A ; 109(28): 11101-4, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22733733

RESUMO

Greenland ice-core δ(18)O-temperature reconstructions suggest a dramatic cooling during the Younger Dryas (YD; 12.9-11.7 ka), with temperatures being as cold as the earlier Oldest Dryas (OD; 18.0-14.6 ka) despite an approximately 50 ppm rise in atmospheric CO(2). Such YD cooling implies a muted Greenland climate response to atmospheric CO(2), contrary to physical predictions of an enhanced high-latitude response to future increases in CO(2). Here we show that North Atlantic sea surface temperature reconstructions as well as transient climate model simulations suggest that the YD over Greenland should be substantially warmer than the OD by approximately 5 °C in response to increased atmospheric CO(2). Additional experiments with an isotope-enabled model suggest that the apparent YD temperature reconstruction derived from the ice-core δ(18)O record is likely an artifact of an altered temperature-δ(18)O relationship due to changing deglacial atmospheric circulation. Our results thus suggest that Greenland climate was warmer during the YD relative to the OD in response to rising atmospheric CO(2), consistent with sea surface temperature reconstructions and physical predictions, and has a sensitivity approximately twice that found in climate models for current climate due to an enhanced albedo feedback during the last deglaciation.


Assuntos
Dióxido de Carbono/química , Regiões Árticas , Atmosfera , Clima , Temperatura Baixa , Sedimentos Geológicos , Aquecimento Global , Efeito Estufa , Groenlândia , Gelo , Isótopos/química , Oxigênio/química , Água do Mar , Temperatura
19.
Science ; 335(6072): 1103-6, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22383849

RESUMO

Bacteria adapt to environmental stimuli by adjusting their transcriptomes in a complex manner, the full potential of which has yet to be established for any individual bacterial species. Here, we report the transcriptomes of Bacillus subtilis exposed to a wide range of environmental and nutritional conditions that the organism might encounter in nature. We comprehensively mapped transcription units (TUs) and grouped 2935 promoters into regulons controlled by various RNA polymerase sigma factors, accounting for ~66% of the observed variance in transcriptional activity. This global classification of promoters and detailed description of TUs revealed that a large proportion of the detected antisense RNAs arose from potentially spurious transcription initiation by alternative sigma factors and from imperfect control of transcription termination.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Transcrição Gênica , Transcriptoma , Adaptação Fisiológica , Algoritmos , Sítios de Ligação , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Análise de Sequência com Séries de Oligonucleotídeos , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulon , Fator sigma/metabolismo , Regiões Terminadoras Genéticas
20.
J Bacteriol ; 194(7): 1800-14, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22307758

RESUMO

The CssRS two-component system responds to heat and secretion stresses in Bacillus subtilis by controlling expression of HtrA and HtrB chaperone-type proteases and positively autoregulating its own expression. Here we report on the features of the CssS extracellular loop domain that are involved in signal perception and on CssS subcellular localization. Individual regions of the CssS extracellular loop domain contribute differently to signal perception and activation. The conserved hydrophilic 26-amino-acid segment juxtaposed to transmembrane helix 1 is involved in the switch between the deactivated and activated states, while the conserved 19-amino-acid hydrophobic segment juxtaposed to transmembrane 2 is required for signal perception and/or transduction. Perturbing the size of the extracellular loop domain increases CssS kinase activity and makes it unresponsive to secretion stress. CssS is localized primarily at the septum but is also found in a punctate pattern with lower intensity throughout the cell cylinder. Moreover, the CssRS-controlled HtrA and HtrB proteases are randomly distributed in foci throughout the cell surface, with more HtrB than HtrA foci in unstressed cells.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Bacillus subtilis/química , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Histidina Quinase , Dados de Sequência Molecular , Proteínas Quinases/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA