Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Omega ; 9(8): 8632-8653, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434807

RESUMO

Agriculture waste has increased annually due to the global food demand and intensive animal production. Preventing environmental degradation requires fast and effective agricultural waste treatment. Aerobic digestion or composting uses agricultural wastes to create a stabilized and sterilized organic fertilizer and reduces chemical fertilizer input. Indeed, conventional composting technology requires a large surface area, a long fermentation period, significant malodorous emissions, inferior product quality, and little demand for poor end results. Conventional composting loses a lot of organic nitrogen and carbon. Thus, this comprehensive research examined sustainable and adaptable methods for improving agricultural waste composting efficiency. This review summarizes composting processes and examines how compost additives affect organic solid waste composting and product quality. Our findings indicate that additives have an impact on the composting process by influencing variables including temperature, pH, and moisture. Compost additive amendment could dramatically reduce gas emissions and mineral ion mobility. Composting additives can (1) improve the physicochemical composition of the compost mixture, (2) accelerate organic material disintegration and increase microbial activity, (3) reduce greenhouse gas (GHG) and ammonia (NH3) emissions to reduce nitrogen (N) losses, and (4) retain compost nutrients to increase soil nutrient content, maturity, and phytotoxicity. This essay concluded with a brief summary of compost maturity, which is essential before using it as an organic fertilizer. This work will add to agricultural waste composting technology literature. To increase the sustainability of agricultural waste resource utilization, composting strategies must be locally optimized and involve the created amendments in a circular economy.

2.
Front Plant Sci ; 13: 1011515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36507429

RESUMO

Improper optimization of the rates and ratios of nitrogen application reduces grain yields and increases the nitrogen loss, thereby affecting environmental quality. In addition, scarcer evidence exists on the integrative approach of nitrogen, which could have effects on the biochemical and physiological characteristics of wheat. Treatments were arranged as nitrogen (N) rates of 00, 75, 150, 225, and 300 kg ha-1 in the main plots, and different nitrogen ratios were organized in subplots at 5:5:0:0 and 6:4:0:0, which were applied at the sowing, jointing, flowering, and grain filling stages. The results revealed that 225 kg N ha-1 significantly enhanced the stomatal conductance (G s), photosynthetic rate (P n), intercellular CO2 (C i), transpiration rate (T r), and total chlorophyll by 28.5%, 42.3%, 10.0%, 15.2%, and 50%, receptively, at the jointing stage in comparison to the control (0 kg N ha-1). Nitrogen application of 225 kg ha-1 increased the soil-plant analysis development (SPAD) value and the chlorophyll a, chlorophyll b, and carotenoid contents of winter wheat under the 6:4:0:0 ratio. The trend of the photosynthetic characteristics was observed to be greater at the 6:4:0:0 fertilization ratio compared to that at 5:5:0:0. The photosynthetic rate was significantly associated with the biochemical and physiological characteristics of winter wheat. In conclusion, the nitrogen dose of 225 kg ha-1 and the ratio of 6:4:0:0 (quantity applied at the sowing, jointing, flowering, and grain filling stages) effectively promoted the photosynthetic and other physiological characteristics of winter wheat.

3.
PLoS One ; 17(1): e0260607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35061707

RESUMO

Instrumental climatological records such as weather stations data of northern areas of Pakistan are not sufficient to assess the forest extreme events reliably. To understand the past climatic variability, tree ring width based climatic reconstruction is the best alternative to trace climate variability that goes back in time. Quercus Incana is the most sensitive species to drought and climatic variation in northern Pakistan. However, very little research quantifies the rate of ongoing climatic changes. A total of 65 tree cores were collected from two sites to understand the radial growth of Q. Incana to extreme drought events. The radial growth is mainly affected by high temperatures during May-July. In addition, radial growth exhibits a positive correlation with February-June precipitation while it is negatively correlated with the September precipitation. The radial growth decrease, particularly in harsh climatic conditions. The reconstructed tree ring record was strongly coherent with the May-June self-calibrated Palmer drought severity index (scPDSI) and reliable in reconstructing drought variability for the period 1750-2014. During the past 264 years, wet periods were found during 1980-2010, 1812-1836, and 1754-1760, while dry periods were found during 1896-1922, 1864-1876, and 1784-1788. Our reconstruction explains 39.8% of the scPDSI variance. The extreme drought and wet years we arrived at were in close agreement with the drought and wet periods that occurred in northern Pakistan. Wavelet analysis revealed drought variability at periodicities of 2.2-2.5, 3.3, 3-4, 16.7, 16.8, and 68-78.8 years. Hence it is concluded that deforestation and forest degradation rate increased with extreme drought and wet years. Overall, the variation of drought in northern Pakistan seems to have been affected due to El Nino south oscillation, Pacific decadal oscillation, or Atlantic multi-decadal oscillations.


Assuntos
Conservação dos Recursos Naturais
4.
PLoS One ; 16(7): e0253714, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34260590

RESUMO

Co-digestion of organic biomass mixed with inorganic amendments could have an impact on composting dynamics. Various studies highlighted fertilizers' role as an additive to lesser the nitrogen loss, while some studies focused on the addition of fertilizers to enhance the efficiency. The changes in carbon, nitrogen components, and humic substances during the organic-inorganic co-compost process were seldom studied. Clarifying these changes might help improve the production process and compost nutrients contents. Thus, this study's purpose is to investigate the effects of inorganic amendments on compost characteristics, compost temperature, biochemical methane production (BMP), and nutritional contents. The inorganic phosphorous (P), sulfur (S), and sulfur solubilizing agent (SSA) were added to Farmyard manure (FYM) mixed with biodegradable waste (BW), including wheat straw, corn stalks, and green lawn waste. The P and S amended treatments were carried out into two sets, with and without SSA. The mixed feedstocks were added in the insulated RBC composting pit (15 x 15 x 10 feet). The compost material's moisture content was maintained 50-65% during the entire composting process for optimum waste digestion i.e., the moisture content (MC) of FYM was 82.7% and for BW ranged 8.8-10.2%, while the C/N ratio was found 10.5 for FYM, 74.5 for wheat straw, 83.5 for corn stalks, and 84.8 for lawn waste. At the condition of compost maturity, the inorganic amendments have no significant effect on composted material's moisture content. The maximum organic matter of 69.7% and C/N ratio of 44.6 was measured in T1. On the 6th day of composting, the temperature reached to thermophilic range (>45 oC) in all the treatments due to aeration of compost increased microbial activities and waste decomposition rate and decreased gradually to mesophilic range (35-45 oC) because the supply of high-energy compounds becomes exhausted. The highest temperature was reached in T4 (58 oC) and lowest in CT (47 oC). The significantly maximum methane of 8.95 m3 and biogas burning was 818 minutes in CT, followed by T1 and T4. The results of this study revealed that P enriched compost is a feasible and sustainable way to overcome P deficiency in the soil as well as in plants and best way to use low-grade P and organic waste material.


Assuntos
Biomassa , Compostagem/métodos , Esterco , Carbono/metabolismo , Estudos de Viabilidade , Metano/metabolismo , Nitrogênio/metabolismo , Fosfatos/metabolismo , Enxofre/metabolismo
5.
Bioresour Technol ; 293: 121962, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31449921

RESUMO

In this study, corn stalk (CS) was pretreated with furfural wastewater (FWW) for whole slurry anaerobic digestion (AD), which increased the degradability of CS components, changed the parameters in pretreatment slurry and improved the biochemical methane potential (BMP). The ultimate goal was to optimize the time and temperature for FWW pretreatment and evaluate whether FWW pretreatment is feasible from BMP and energy conversion. The results of path analysis suggested that lignocellulosic degradability (LD) was the main factor affecting methane production with the comprehensive decision of 0.7006. The highest BMP (166.34 mL/g VS) was achieved by the pretreatment at 35 °C for 6 days, which was 70.36% higher than that of control check (CK) (97.64 mL/g VS) and the optimal pretreatment condition was predicted at 40.69 °C for 6.49 days by response surface methodology (RSM). The net residual value (NRV) for the pretreatment of 35 °C and 6 days was the highest (0.6201), which was the most appropriate condition for AD in real application.


Assuntos
Águas Residuárias , Zea mays , Anaerobiose , Furaldeído , Metano
6.
Sci Total Environ ; 674: 49-57, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31003087

RESUMO

Previous studies showed that excellent anaerobic digestion performance could be achieved using acid pretreatment, whereas the development of acid pretreatment was limited by high cost of acid consumption and severe operation. The aim of this study consisted in expanding the possibilities of low-cost acid pretreatment method for anaerobic digestion. For this, the feasibility of substituting conventional acid pretreatment with furfural wastewater was verified, and the whole slurry anaerobic digestion was performed to improve the production of methane. The furfural wastewater was used to pretreat crop stalk at different ambient temperatures (20, 35, 50°C) for different time periods (0, 3, 6, 9days). Subsequently, all treated and untreated crop stalk were digested at 35°C for 25days. According to experimental data showed that the dissimilar degradability of compositions for crop stalk was due to furfural wastewater pretreatment, and the reducing sugar content, volatile fatty acid content, pH during pretreatment phase, and their initial maximum & minimum values in anaerobic digestion phase were changed, which made a significant difference in methane production. The highest total methane production of anaerobic digestion (196.68mL/g VS) was achieved by the treatment at 35°C for 6days, which was 59.28% higher than untreated crop stalk (123.48mL/g VS). On the whole, the results showed that furfural wastewater pretreatment followed by the whole slurry anaerobic co-digestion was feasible and could contribute to application value for anaerobic digestion industry while providing an effective way for the treatment of furfural wastewater.


Assuntos
Furaldeído/análise , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Anaerobiose , Metano/biossíntese , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA