Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Environ Toxicol Chem ; 41(11): 2758-2768, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35959890

RESUMO

Recent literature has demonstrated the sensitivity of mayflies to environmental contaminants. However, to date, there are no methods approved by the US Environmental Protection Agency for using sensitive insects like mayflies in whole-effluent toxicity or receiving water toxicity tests. The parthenogenetic mayfly Neocloeon triangulifer has been shown to be amenable to continuous culture in the laboratory, and methods have been described for its use in both acute and chronic toxicity studies. The goal of the present study was to investigate aspects of N. triangulifer testing and culturing methods that might require adjustment so that they are applicable for testing effluents and receiving waters in a short-term exposure. To this end, the influence of organism age, test duration, and test temperature on sensitivity to NaCl as a reference toxicant were tested (concentrations ranging from 182 to 2489 mg/L). Further studies were conducted to assess the utility of commercially available diets and the influence of nutrient amendment of water on organism growth and sensitivity. Seven-day NaCl tests started with less than 24-h-old larvae were similar in sensitivity to 14-day and full life chronic tests, and were much more sensitive than those started with 7-day-old organisms. Reducing test temperature from 25 °C to 22 °C had a minor influence on culture timing, and little impact on sensitivity to NaCl. In other experiments, reconstituted test water supplemented with nutrients to potentially improve in-test food quality had minimal effect on growth at 7 days and did not significantly alter acute sensitivity to NaCl relative to unamended reconstituted water. A suitable commercially available, ready-to-feed diet substitute for cultured diatoms was not found. Testing N. triangulifer in effluents or receiving waters with the methods recommended will complement similar methods for Ceriodaphnia dubia. Environ Toxicol Chem 2022;41:2758-2768. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Cladocera , Ephemeroptera , Poluentes Químicos da Água , Humanos , Animais , Cloreto de Sódio/toxicidade , Poluentes Químicos da Água/toxicidade , Substâncias Perigosas , Água
2.
Environ Toxicol Chem ; 41(9): 2095-2106, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35665535

RESUMO

Mathematical models are presented for the acute median lethal concentrations of major geochemical ions (Na+ , K+ , Ca2+ , Mg2+ , Cl- , SO4 2- , HCO3 - /CO3 2- ) to fathead minnows (Pimephales promelas), based on an extensive series of experiments presented in a companion article. Toxicity relationships across different dilution waters, individual salts, and salt mixtures suggest six independent mechanisms of toxicity to consider in modeling efforts, including Mg/Ca-specific toxicity, osmolarity-related toxicity, SO4 -specific toxicity, K-specific toxicity, effects of high pH/alkalinity, and a multiple ion-related toxicity at low Ca distinct from the other mechanisms. Models are evaluated using chemical activity-based exposure metrics pertinent to each mechanism, but concentration-based alternative models that are simpler to apply are also addressed. These models are compared to those previously provided for Ceriodaphnia dubia, and various issues regarding their application to risk assessments are discussed. Environ Toxicol Chem 2022;41:2095-2106. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Cladocera , Cyprinidae , Poluentes Químicos da Água , Animais , Humanos , Íons , Testes de Toxicidade Aguda , Poluentes Químicos da Água/química
3.
Environ Toxicol Chem ; 41(9): 2078-2094, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35622012

RESUMO

The results of a series of experiments on the acute toxicity of major geochemical ions (Na+ , K+ , Ca2+ , Mg2+ , Cl- , SO4 2- , HCO3 - /CO3 2- ) to fathead minnows (Pimephales promelas) are reported. Tests of individual major ion salts in various dilution waters demonstrated that the toxicities of Na, Mg, and K salts decrease as the overall ion content of the dilution water increases. For Na and Mg salts, this is attributable to Ca content as previously reported for Ceriodaphnia dubia. For K salts, the cause is unclear, but it is not due to Na as reported for C. dubia. In an unregulated test at high pH (9.3), NaHCO3 was also found to be twice as toxic compared to when the pH was reduced to 8.4. Experiments with binary salt mixtures indicated the existence of multiple independent mechanisms of action. These include K-specific toxicity and Ca/Mg-specific toxicity previously reported for C. dubia, but also apparent toxicities related to SO4 and to high pH/alkalinity in CO3 /HCO3 -dominated exposures. Previous work with C. dubia also suggested a general ion toxicity involving all ions that was correlated with osmolarity. For fathead minnow, similar correlations were observed, but multiple mechanisms were indicated. At higher Ca, this general toxicity could be attributable to osmotic effects, but at lower Ca, osmolarity may be more a covariate than a cause, with this toxicity being related to a combined effect of ions other than via osmolarity. Environ Toxicol Chem 2022;41:2078-2094. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Cladocera , Cyprinidae , Poluentes Químicos da Água , Animais , Humanos , Íons , Sais/química , Sais/toxicidade , Sódio , Cloreto de Sódio/farmacologia , Poluentes Químicos da Água/química
4.
Arch Environ Contam Toxicol ; 80(3): 579-586, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33730174

RESUMO

The brominated flame retardant bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH) is used widely in consumer items including polyurethane foam used in furniture. Information on its bioaccumulation in aquatic species is limited. In the current study, sediment bioaccumulation tests with the oligochaete Lumbriculus variegatus were performed on a spiked natural sediment equilibrated for 14.5 months. Analysis showed the TBPH used to spike the sediment contained a small amount (0.046% by mass) of mono-(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBMEHP), a potential biotransformation product of the parent chemical. Steady-state biota-sediment accumulation factors (BSAFs) of 0.254 and 1.50 (kg organic carbon/kg lipid) were derived for TBPH and TBMEHP, respectively. TBPH had biphasic elimination behavior where 94% of the body burden was depleted within the first 12 h of elimination (i.e., half-life of 1.2 h or less) and the remaining 6% eliminated very slowly thereafter (half-life of 15 days). There was little evidence for biotransformation of either chemical by L. variegatus. This investigation confirms the extremely hydrophobic behavior of TBPH and its impact on its bioavailability.


Assuntos
Retardadores de Chama , Oligoquetos , Ácidos Ftálicos , Animais , Bioacumulação , Disponibilidade Biológica , Retardadores de Chama/análise , Sedimentos Geológicos
5.
Environ Toxicol Chem ; 38(10): 2294-2304, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31269286

RESUMO

Multiple mode of action (MOA) frameworks have been developed in aquatic ecotoxicology, mainly based on fish toxicity. These frameworks provide information on a key determinant of chemical toxicity, but the MOA categories and level of specificity remain unique to each of the classification schemes. The present study aimed to develop a consensus MOA assignment within EnviroTox, a curated in vivo aquatic toxicity database, based on the following MOA classification schemes: Verhaar (modified) framework, Assessment Tool for Evaluating Risk, Toxicity Estimation Software Tool, and OASIS. The MOA classifications from each scheme were first collapsed into one of 3 categories: non-specifically acting (i.e., narcosis), specifically acting, or nonclassifiable. Consensus rules were developed based on the degree of concordance among the 4 individual MOA classifications to attribute a consensus MOA to each chemical. A confidence rank was also assigned to the consensus MOA classification based on the degree of consensus. Overall, 40% of the chemicals were classified as narcotics, 17% as specifically acting, and 43% as unclassified. Sixty percent of chemicals had a medium to high consensus MOA assignment. When compared to empirical acute toxicity data, the general trend of specifically acting chemicals being more toxic is clearly observed for both fish and invertebrates but not for algae. EnviroTox is the first approach to establishing a high-level consensus across 4 computationally and structurally distinct MOA classification schemes. This consensus MOA classification provides both a transparent understanding of the variation between MOA classification schemes and an added certainty of the MOA assignment. In terms of regulatory relevance, a reliable understanding of MOA can provide information that can be useful for the prioritization (ranking) and risk assessment of chemicals. Environ Toxicol Chem 2019;38:2294-2304. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Consenso , Ecotoxicologia , Animais , Bases de Dados Factuais , Peixes/fisiologia , Invertebrados/fisiologia , Medição de Risco , Testes de Toxicidade Aguda
6.
Arch Environ Contam Toxicol ; 76(1): 129-141, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30151657

RESUMO

Bioaccumulation of highly hydrophobic chemicals (log KOW > 8) from contaminated sediments by Lumbriculus variegatus has been studied for relatively few chemicals, and the measured and model predicted biota-sediment accumulation factors (BSAFs) can differ by orders of magnitude. In the current study, sediment bioaccumulation tests with L. variegatus were performed on sediments dosed with chemicals having a wide range of predicted n-octanol/water partition coefficients (KOW; 106-1018), including some higher than most highly hydrophobic chemicals studied to date. The highly hydrophobic chemicals had biphasic elimination kinetics with compartments A and B having fast and slow elimination kinetics, respectively, and for compartment B, elimination followed first-order kinetics. For compartment A with fast elimination kinetics, the mechanism and its kinetic-order could not be determined. Steady-state BSAFs (kg organic carbon/kg lipid) of 0.015, 0.024, and 0.022 were derived for tetradecachloro-p-terphenyl, tetradecachloro-m-terphenyl, and octadecachloro-p-quaterphenyl, respectively. The high uncertainty in predicted KOWs for highly hydrophobic chemicals limited the comparison and evaluation of predicted BSAFs from the Arnot-Gobas food web model and BSAFs measured in this study. The results of this study point to the need to perform dietary assimilation efficiency studies with highly hydrophobic compounds to resolve uncertainties surrounding the estimation of their KOW and the need to understand mechanism and models for the biphasic elimination kinetics.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Modelos Teóricos , Oligoquetos/metabolismo , Poluentes Químicos da Água/análise , Animais , Cadeia Alimentar , Interações Hidrofóbicas e Hidrofílicas , Lagos/química , Poluentes Químicos da Água/metabolismo
7.
Environ Toxicol Chem ; 38(4): 769-783, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30569525

RESUMO

In previous work we intensively studied the acute responses of the cladoceran Ceriodaphnia dubia to major geochemical ions (Na+ , K+ , Ca2+ , Mg2+ , Cl- , SO42- , and HCO3- /CO32- ), culminating in the development of models to predict acute toxicity from ionic composition. To quantitatively evaluate whether the toxicological behavior of major ions observed for C. dubia extends to chronic toxicity, we conducted 58 chronic toxicity tests with individual major salts and binary mixtures thereof. Chronic responses paralleled those demonstrated previously for acute exposure, specifically 1) similar relative toxicity of individual salts; 2) different Na salts showing similar potency when exposure is expressed as osmolarity; 3) toxicity of Mg, Ca, and K salts related to cation activity; 4) decreased toxicity of Na and Mg salts when Ca activity is increased at less than toxic concentrations; 5) additive behavior for salt mixtures sharing a common cation; and 6) independent behavior for salt mixtures with dissimilar cations, except Mg/Ca mixtures which appeared additive. Acute-to-chronic ratios were fairly consistent among salts, with values of approximately 1.8 for acute 50% lethal concentration (LC50) to chronic 50% effect concentration (EC50) and 2.8 for LC50/EC20 when expressed on an activity basis. Adjusting the previous acute toxicity model for acute-to-chronic ratios yielded chronic models that predict chronic toxicity within the range of intertest variability. Because these models are informed by a wide range of ion mixtures, they should provide robust assessment tools for natural waters enriched with major ions. Environ Toxicol Chem 2019;38:769-783. © Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Cladocera/efeitos dos fármacos , Sais/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Íons , Sais/química , Testes de Toxicidade Aguda , Testes de Toxicidade Crônica , Poluentes Químicos da Água/química
8.
Environ Toxicol Chem ; 37(11): 2745-2757, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30359486

RESUMO

Since the 1940s, effluent toxicity testing has been used to assess potential ecological impacts of effluents and help determine necessary treatment options for environmental protection prior to release. Strategic combinations of toxicity tests, analytical tools, and biological monitoring have been developed. Because the number of vertebrates utilized in effluent testing is thought to be much greater than that used for individual chemical testing, there is a new need to develop strategies to reduce the numbers of vertebrates (i.e., fish) used. This need will become more critical as developing nations begin to use vertebrates in toxicity tests to assess effluent quality. A workshop was held to 1) assess the state of science in effluent toxicity testing globally; 2) determine current practices of regulators, industry, private laboratories, and academia; and 3) explore alternatives to vertebrate (fish) testing options and the inclusion of modified/new methods and approaches in the regulatory environment. No single approach was identified, because of a range of factors including regulatory concerns, validity criteria, and wider acceptability of alternatives. However, a suite of strategies in a weight-of-evidence approach would provide the flexibility to meet the needs of the environment, regulators, and the regulated community; and this "toolbox" approach would also support reduced reliance on in vivo fish tests. The present Focus article provides a brief overview of wastewater regulation and effluent testing approaches. Alternative methodologies under development and some of the limitations and barriers to regulatory approaches that can be selected to suit individual country and regional requirements are described and discussed. Environ Toxicol Chem 2018;37:2745-2757. © 2018 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.


Assuntos
Alternativas aos Testes com Animais/métodos , Internacionalidade , Medição de Risco , Testes de Toxicidade/métodos , Poluentes Químicos da Água/análise , Animais , Humanos , Controle Social Formal
9.
Environ Toxicol Chem ; 37(1): 247-259, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28833416

RESUMO

Based on previous research on the acute toxicity of major ions (Na+ , K+ , Ca2+ , Mg2+ , Cl- , SO42- , and HCO3- /CO32- ) to Ceriodaphnia dubia, a mathematical model was developed for predicting the median lethal concentration (LC50) for any ion mixture, excepting those dominated by K-specific toxicity. One component of the model describes a mechanism of general ion toxicity to which all ions contribute and predicts LC50s as a function of osmolarity and Ca activity. The other component describes Mg/Ca-specific toxicity to apply when such toxicity exceeds the general ion toxicity and predicts LC50s as a function of Mg and Ca activities. This model not only tracks well the observed LC50s from past research used for model development but also successfully predicts LC50s from new toxicity tests on synthetic mixtures of ions emulating chemistries of various ion-enriched effluents and receiving waters. It also performs better than a previously published model for major ion toxicity. Because of the complexities of estimating chemical activities and osmolarity, a simplified model based directly on ion concentrations was also developed and found to provide useful predictions. Environ Toxicol Chem 2018;37:247-259. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Cladocera/metabolismo , Modelos Teóricos , Sais/toxicidade , Testes de Toxicidade Aguda , Animais , Cálcio/toxicidade , Cladocera/efeitos dos fármacos , Cladocera/crescimento & desenvolvimento , Íons , Dose Letal Mediana , Magnésio/toxicidade , Concentração Osmolar , Poluentes Químicos da Água/química
10.
Environ Toxicol Chem ; 36(6): 1525-1537, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27800634

RESUMO

Many human activities increase concentrations of major geochemical ions (Na+1 , K+1 , Ca+2 , Mg+2 , Cl-1 , SO4-2 , and HCO3-1 /CO3-2 ) in freshwater systems, and can thereby adversely affect aquatic life. Such effects involve several toxicants, multiple toxicity mechanisms, various ion interactions, and widely varying ion compositions across different water bodies. Previous studies of individual salt toxicities have defined some useful relationships; however, adding single salts to waters results in atypical compositions and does not fully address mixture toxicity. To better understand mechanisms and interactions for major ion toxicity, 29 binary mixture experiments, each consisting of 7 to 8 toxicity tests, were conducted on the acute toxicity of major ion salts and mannitol to Ceriodaphnia dubia. These tests showed multiple mechanisms of toxicity, including: 1) nonspecific ion toxicity, correlated with osmolarity and to which all ions contribute; and 2) cation-dependent toxicities for potassium (K), magnesium (Mg), and calcium (Ca) best related to their chemical activities. These mechanisms primarily operate independently, except for additive toxicity of Mg-dependent and Ca-dependent toxicities. These mixture studies confirmed ameliorative effects of Ca on sodium (Na) and Mg salt toxicities and of Na on K salt toxicity, and further indicated lesser ameliorative effects of Ca on K salt toxicity and Mg on Na salt toxicity. These results provide a stronger basis for assessing risks from the complex mixtures of ions found in surface waters. Environ Toxicol Chem 2017;36:1525-1537. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Cladocera/efeitos dos fármacos , Magnésio/toxicidade , Sódio/toxicidade , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Água Doce , Magnésio/química , Sódio/química , Cloreto de Sódio/farmacologia , Poluentes Químicos da Água/química
11.
Arch Environ Contam Toxicol ; 71(1): 70-7, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27165691

RESUMO

At contaminated sediment sites, the bioavailability of contaminants in sediments is assessed using sediment-bioaccumulation tests with Lumbriculus variegates (Lv). The testing protocols recommend that ratio of total organic carbon (TOC) in sediment to L. variegatus (dry weight) (TOC/Lv) should be no less than 50:1. Occasionally, this recommendation is not followed, especially with sediments having low TOC, e.g., <1 %. This study evaluated the impacts and resulting biases in the testing results when the recommendation of "no less than 50:1" is not followed. In the study, seven sediments were tested with a series of TOC/Lv ratios that spanned the recommendation. With increasing loading of organisms, growth of the organisms decreased in six of the seven sediments tested. Residues of polychlorinated biphenyls (PCBs) in the L. variegatus were measured in six of the seven sediments tested, and differences in PCB residues among loading ratios across all sediments were small, i.e., ±50 %, from those measured at the minimum recommended ratio of 50:1 TOC/Lv. In all sediment, PCB residues increased with increasing loading of the organisms for the mono-, di-, and tri-chloro-PCBs. For tetra-chloro and heavier PCBs, residues increased with increasing loading of organisms for only two of the six sediments. PCB residues were not significantly different between TOC/Lv loadings of 50:1 and mid-20:1 ratios indicating that equivalent results can be obtained with TOC/Lv ratios into the mid-20:1 ratios. Overall, the testing results suggest that when testing recommendation of 50:1 TOC/Lv is not followed, potential biases in the biota-sediment accumulations factors from the sediment-bioaccumulation test will be small.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Oligoquetos/metabolismo , Poluentes do Solo/metabolismo , Animais
12.
Environ Toxicol Chem ; 35(12): 3039-3057, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27167636

RESUMO

The ions Na+ , K+ , Ca2+ , Mg2+ , Cl- , SO42- , and HCO3- /CO32- (referred to in the present study as "major ions") are present in all freshwaters and physiologically required by aquatic organisms but can increase to harmful levels from a variety of anthropogenic activities. It is also known that the toxicities of major ion salts can vary depending on the concentrations of other ions, and understanding these relationships is key to establishing appropriate environmental limits. The authors present a series of experiments with Ceriodaphnia dubia to evaluate the acute toxicity of 12 major ion salts and to determine how toxicity of these salts varies as a function of background water chemistry. All salts except CaSO4 and CaCO3 were acutely toxic below saturation, with the lowest median lethal concentrations found for K salts. All 10 salts that showed toxicity also showed some degree of reduced toxicity as the ionic content of the background water increased. Experiments that independently varied Ca:Mg ratio, Na:K ratio, Cl:SO4 ratio, and alkalinity/pH demonstrated that Ca concentration was the primary factor influencing the toxicities of Na and Mg salts, whereas the toxicities of K salts were primarily influenced by the concentration of Na. These experiments also indicated multiple mechanisms of toxicity and suggested important aspects of dosimetry; the toxicities of K, Mg, and Ca salts were best related to the chemical activity of the cation, whereas the toxicities of Na salts also reflected an influence of the anions and were well correlated with osmolarity. Understanding these relationships between major ion toxicity and background water chemistry should aid in the development of sensible risk-assessments and regulatory standards. Environ Toxicol Chem 2016;35:3039-3057. Published 2016 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Cladocera/efeitos dos fármacos , Sais/química , Poluentes Químicos da Água/toxicidade , Animais , Cladocera/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Íons/química , Dose Letal Mediana , Metais/química , Metais/toxicidade , Testes de Toxicidade Aguda , Poluentes Químicos da Água/química
13.
Environ Toxicol Chem ; 35(10): 2439-2447, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26932313

RESUMO

Studies have been conducted to refine US Environmental Protection Agency, ASTM International, and Environment Canada standard methods for conducting 42-d reproduction tests with Hyalella azteca in water or in sediment. Modifications to the H. azteca method include better-defined ionic composition requirements for exposure water (i.e., >15 mg/L of chloride and >0.02 mg/L of bromide) and improved survival, growth, and reproduction with alternate diets provided as increased rations over time in water-only or whole-sediment toxicity tests. A total of 24 laboratories volunteered to participate in the present interlaboratory study evaluating the performance of H. azteca in 42-d studies in control sand or control sediment using the refined methods. Improved growth and reproduction of H. azteca was observed with 2 alternate diets of 1) ramped diatoms (Thalassiosira weissflogii) + ramped Tetramin or 2) yeast-cerophyll-trout chow (YCT) + ramped Tetramin, especially when compared with results from the traditional diet of 1.8 mg YCT/d. Laboratories were able to meet proposed test acceptability criteria and in most cases had lower variation in growth or reproduction compared with previous interlaboratory studies using the traditional YCT diet. Laboratory success in conducting 42-d H. azteca exposures benefited from adherence to several key requirements of the detailed testing, culturing, and handling methods. Results from the present interlaboratory study are being used to help revise standard methods for conducting 10-d to 42-d water or sediment toxicity exposures with H. azteca. Environ Toxicol Chem 2016;35:2439-2447. © 2016 SETAC.


Assuntos
Anfípodes/efeitos dos fármacos , Sedimentos Geológicos/química , Testes de Toxicidade/métodos , Poluentes Químicos da Água/toxicidade , Anfípodes/crescimento & desenvolvimento , Anfípodes/fisiologia , Animais , Laboratórios/normas , Reprodução/efeitos dos fármacos , Fatores de Tempo , Testes de Toxicidade/normas , Poluentes Químicos da Água/química , Qualidade da Água
14.
Arch Environ Contam Toxicol ; 68(4): 696-706, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25796613

RESUMO

Standard sediment-bioaccumulation test methods specify that Lumbriculus variegatus should not be fed during the 28-day exposure. This lack of feeding can lead to decreases in L. variegatus weight and lipid content during the 28-day exposure period. Differences in intrinsic nutritional content of sediments could lead to additional variability in organism performance and/or contaminant uptake. To evaluate the potential benefits of feeding, sediment-bioaccumulation tests were performed comparing treatments with and without supplemental feeding with tropical fish food and also comparing performance food introduced as blended slurry versus fine flakes. The ration of food provided had to be limited to 6 mg/300-mL beaker with 250 mg of L. variegatus (ww) receiving three feedings per week to maintain acceptable dissolved oxygen (DO) in the test chambers. Relative weight change during exposure varied across sediments in the absence of food from very little change to as much as a 40 % decrease from starting weight. Feeding slurry and flake foods increased the total weight of recovered organisms by 32 and 48 %, respectively, but they did not decrease variability in weight changes across sediments. Lipid contents of the organisms decreased similarly across all feeding treatments during the test. At test termination, lipid contents of L. variegatus across unfed, slurry-fed, and flake-fed treatments were not significantly different per Tukey's honest significant difference test with 95 % family-wise confidence. Feeding resulted in polychlorinated biphenyl residues in L. variegatus being generally slightly less (median 78 %) and slightly greater (median 135 %) than the unfed treatments with slurry and flake formulated foods, respectively.


Assuntos
Dieta/métodos , Sedimentos Geológicos/química , Oligoquetos/fisiologia , Ração Animal , Animais , Sedimentos Geológicos/análise , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise
15.
Environ Toxicol Chem ; 32(12): 2826-35, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24243594

RESUMO

In previous laboratory chronic 7-d toxicity tests conducted with the cladoceran Ceriodaphnia dubia, surface waters collected from Appalachian sites impacted by coal mining have shown toxic effects associated with elevated total dissolved solids (TDS). The objective of the present study was to evaluate the effects of elevated major ions in chronic laboratory tests with C. dubia (7-d exposure), a unionid mussel (Lampsilis siliquoidea; 28-d exposure), an amphipod (Hyalella azteca; 28-d exposure), and a mayfly (Centroptilum triangulifer; 35-d exposure) in 3 reconstituted waters designed to be representative of 3 Appalachian sites impacted by coal mining. Two of the reconstituted waters had ionic compositions representative of alkaline mine drainage associated with mountaintop removal and valley fill-impacted streams (Winding Shoals and Boardtree, with elevated Mg, Ca, K, SO4, HCO3), and a third reconstituted water had an ionic composition representative of neutralized mine drainage (Upper Dempsey, with elevated Na, K, SO4, and HCO3). The waters with similar conductivities but, with different ionic compositions had different effects on the test organisms. The Winding Shoals and Boardtree reconstituted waters were consistently toxic to the mussel, the amphipod, and the mayfly. In contrast, the Upper Dempsey reconstituted water was toxic to the mussel, the amphipod, and the cladoceran but was not toxic to the mayfly. These results indicate that, although elevated TDS can be correlated with toxicity, the specific major ion composition of the water is important. Moreover, the choice of test organism is critical, particularly if a test species is to be used as a surrogate for a range of faunal groups.


Assuntos
Bicarbonatos/toxicidade , Cloretos/toxicidade , Metais Alcalinos/toxicidade , Metais Alcalinoterrosos/toxicidade , Rios , Sulfatos/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/efeitos dos fármacos , Animais , Região dos Apalaches , Cladocera/efeitos dos fármacos , Minas de Carvão , Insetos/efeitos dos fármacos , Íons , Testes de Toxicidade Crônica , Unionidae/efeitos dos fármacos
16.
Environ Toxicol Chem ; 32(11): 2528-41, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23881739

RESUMO

Spironolactone is a pharmaceutical that in humans is used to treat conditions like hirsutism, various dermatologic afflictions, and female-pattern hair loss through antagonism of the androgen receptor. Although not routinely monitored in the environment, spironolactone has been detected downstream of a pharmaceutical manufacturer, indicating a potential for exposure of aquatic species. Furthermore, spironolactone has been reported to cause masculinization of female western mosquitofish, a response indicative of androgen receptor activation. Predictive methods to identify homologous proteins to the human and western mosquitofish androgen receptor suggest that vertebrates would be more susceptible to adverse effects mediated by chemicals like spironolactone that target the androgen receptor compared with invertebrate species that lack a relevant homolog. In addition, an adverse outcome pathway previously developed for activation of the androgen receptor suggests that androgen mimics can lead to reproductive toxicity in fish. To assess this, 21-d reproduction studies were conducted with 2 fish species, fathead minnow and Japanese medaka, and the invertebrate Daphnia magna. Spironolactone significantly reduced the fecundity of medaka and fathead minnows at 50 µg/L, whereas daphnia reproduction was not affected by concentrations as large as 500 µg/L. Phenotypic masculinization of females of both fish species was observed at 5 µg/L as evidenced by formation of tubercles in fathead minnows and papillary processes in Japanese medaka. Effects in fish occurred at concentrations below those reported in the environment. These results demonstrate how a priori knowledge of an adverse outcome pathway and the conservation of a key molecular target across vertebrates can be utilized to identify potential chemicals of concern in terms of monitoring and highlight potentially sensitive species and endpoints for testing.


Assuntos
Androgênios/toxicidade , Cyprinidae/fisiologia , Daphnia/efeitos dos fármacos , Oryzias/fisiologia , Espironolactona/toxicidade , Poluentes Químicos da Água/toxicidade , Antagonistas de Androgênios/toxicidade , Animais , Daphnia/metabolismo , Feminino , Masculino , Receptores Androgênicos/metabolismo , Reprodução/efeitos dos fármacos , Especificidade da Espécie , Vitelogeninas/genética , Vitelogeninas/metabolismo
17.
Environ Monit Assess ; 156(1-4): 51-67, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18677546

RESUMO

The Sediment Quality Triad (SQT) consists of complementary measures of sediment chemistry, benthic community structure, and sediment toxicity. We applied the SQT at 20 stations in the tidal portion of the Anacostia River from Bladensburg, MD to Washington, DC to establish a baseline of conditions to evaluate the effects of management actions. Sediment toxicity was assessed using 10-day survival and growth tests with the freshwater amphipod, Hyalella azteca and the midge, Chironomus dilutus. Triplicate grabs were taken at each station for benthic community analysis and the Benthic Index of Biotic Integrity (B-IBI) was used to interpret the data. Only one station, #92, exhibited toxicity related to sediment contamination. Sediments from this station significantly inhibited growth of both test species, had the highest concentrations of contaminants, and had a degraded benthic community, indicated by a B-IBI of less than 3. Additional sediment from this station was tested and sediment toxicity identification evaluation (TIE) procedures tentatively characterized organic compounds as the cause of toxicity. Overall, forty percent of the stations were classified as degraded by the B-IBI. However, qualitative and quantitative comparisons with sediment quality benchmarks indicated no clear relationship between benthic community health and contaminant concentrations. This study provides a baseline for assessing the effectiveness of management actions in the Anacostia River.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/análise , Rios/química , Anfípodes/efeitos dos fármacos , Animais , Biodiversidade , District of Columbia , Testes de Toxicidade , Estados Unidos , Poluentes Químicos da Água/toxicidade
18.
Environ Toxicol Chem ; 25(10): 2662-74, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17022407

RESUMO

Methods for assessing the long-term toxicity of sediments to Hyalella azteca and Chironomus tentans can significantly enhance the capacity to assess sublethal effects of contaminated sediments through multiple endpoints. Sublethal tests allow us to begin to understand the relationship between short-term and long-term effects for toxic sediments. We present an interlaboratory evaluation with long-term and 10-d tests using control and contaminated sediments in which we assess whether proposed and existing performance criteria (test acceptability criteria [TAC]) could be achieved. Laboratories became familiar with newly developed, long-term protocols by testing two control sediments in phase 1. In phase 2, the 10-d and long-term tests were examined with several sediments. Laboratories met the TACs, but results varied depending on the test organism, test duration, and endpoints. For the long-term tests in phase 1, 66 to 100% of the laboratories consistently met the TACs for survival, growth, or reproduction using H. azrteca, and 70 to 100% of the laboratories met the TACs for survival and growth, emergence, reproduction, and hatchability using C. tentans. In phase 2, fewer laboratories participated in long-term tests: 71 to 88% of the laboratories met the TAC for H. azteca, whereas 50 to 67% met the TAC for C. tentans. In the 10-d tests with H. azteca and C. tentans, 82 and 88% of the laboratories met the TAC for survival, respectively, and 80% met the TAC for C. tentans growth. For the 10-d and long-term tests, laboratories predicted similar toxicity. Overall, the interlaboratory evaluation showed good precision of the methods, appropriate endpoints were incorporated into the test protocols, and tests effectively predicted the toxicity of sediments.


Assuntos
Chironomidae/efeitos dos fármacos , Crustáceos/efeitos dos fármacos , Sedimentos Geológicos/química , Poluentes da Água/toxicidade , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA