Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem J ; 473(19): 3099-111, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27487839

RESUMO

Membrane-bound pyrophosphatases (mPPases) hydrolyze pyrophosphate (PPi) to transport H(+), Na(+) or both and help organisms to cope with stress conditions, such as high salinity or limiting nutrients. Recent elucidation of mPPase structure and identification of subfamilies that have fully or partially switched from Na(+) to H(+) pumping have established mPPases as versatile models for studying the principles governing the mechanism, specificity and evolution of cation transporters. In the present study, we constructed an accurate phylogenetic map of the interface of Na(+)-transporting PPases (Na(+)-PPases) and Na(+)- and H(+)-transporting PPases (Na(+),H(+)-PPases), which guided our experimental exploration of the variations in PPi hydrolysis and ion transport activities during evolution. Surprisingly, we identified two mPPase lineages that independently acquired physiologically significant Na(+) and H(+) cotransport function. Na(+),H(+)-PPases of the first lineage transport H(+) over an extended [Na(+)] range, but progressively lose H(+) transport efficiency at high [Na(+)]. In contrast, H(+)-transport by Na(+),H(+)-PPases of the second lineage is not inhibited by up to 100 mM Na(+) With the identification of Na(+),H(+)-PPase subtypes, the mPPases protein superfamily appears as a continuum, ranging from monospecific Na(+) transporters to transporters with tunable levels of Na(+) and H(+) cotransport and further to monospecific H(+) transporters. Our results lend credence to the concept that Na(+) and H(+) are transported by similar mechanisms, allowing the relative efficiencies of Na(+) and H(+) transport to be modulated by minor changes in protein structure during the course of adaptation to a changing environment.


Assuntos
Evolução Biológica , Proteínas de Membrana/metabolismo , Pirofosfatases/metabolismo , Trocadores de Sódio-Hidrogênio/fisiologia , Hidrólise , Transporte de Íons , Proteínas de Membrana/genética , Metais/metabolismo , Filogenia , Pirofosfatases/genética , Proteínas Recombinantes/metabolismo
2.
Biochem J ; 467(2): 281-91, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25662511

RESUMO

Membrane-bound pyrophosphatase (mPPases) of various types consume pyrophosphate (PPi) to drive active H+ or Na+ transport across membranes. H+-transporting PPases are divided into phylogenetically distinct K+-independent and K+-dependent subfamilies. In the present study, we describe a group of 46 bacterial proteins and one archaeal protein that are only distantly related to known mPPases (23%-34% sequence identity). Despite this evolutionary divergence, these proteins contain the full set of 12 polar residues that interact with PPi, the nucleophilic water and five cofactor Mg2+ ions found in 'canonical' mPPases. They also contain a specific lysine residue that confers K+ independence on canonical mPPases. Two of the proteins (from Chlorobium limicola and Cellulomonas fimi) were expressed in Escherichia coli and shown to catalyse Mg2+-dependent PPi hydrolysis coupled with electrogenic H+, but not Na+ transport, in inverted membrane vesicles. Unique features of the new H+-PPases include their inhibition by Na+ and inhibition or activation, depending on PPi concentration, by K+ ions. Kinetic analyses of PPi hydrolysis over wide ranges of cofactor (Mg2+) and substrate (Mg2-PPi) concentrations indicated that the alkali cations displace Mg2+ from the enzyme, thereby arresting substrate conversion. These data define the new proteins as a novel subfamily of H+-transporting mPPases that partly retained the Na+ and K+ regulation patterns of their precursor Na+-transporting mPPases.


Assuntos
Proteínas de Bactérias/metabolismo , Cellulomonas/enzimologia , Chlorobium/enzimologia , Proteínas de Membrana/metabolismo , Prótons , Pirofosfatases/metabolismo , Sódio/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/enzimologia , Membrana Celular/genética , Cellulomonas/genética , Chlorobium/genética , Difosfatos/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Transporte de Íons/fisiologia , Magnésio/metabolismo , Proteínas de Membrana/genética , Potássio/metabolismo , Pirofosfatases/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
J Biol Chem ; 288(49): 35489-99, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24158447

RESUMO

Membrane-bound Na(+)-pyrophosphatase (Na(+)-PPase), working in parallel with the corresponding ATP-energized pumps, catalyzes active Na(+) transport in bacteria and archaea. Each ~75-kDa subunit of homodimeric Na(+)-PPase forms an unusual funnel-like structure with a catalytic site in the cytoplasmic part and a hydrophilic gated channel in the membrane. Here, we show that at subphysiological Na(+) concentrations (<5 mM), the Na(+)-PPases of Chlorobium limicola, four other bacteria, and one archaeon additionally exhibit an H(+)-pumping activity in inverted membrane vesicles prepared from recombinant Escherichia coli strains. H(+) accumulation in vesicles was measured with fluorescent pH indicators. At pH 6.2-8.2, H(+) transport activity was high at 0.1 mM Na(+) but decreased progressively with increasing Na(+) concentrations until virtually disappearing at 5 mM Na(+). In contrast, (22)Na(+) transport activity changed little over a Na(+) concentration range of 0.05-10 mM. Conservative substitutions of gate Glu(242) and nearby Ser(243) and Asn(677) residues reduced the catalytic and transport functions of the enzyme but did not affect the Na(+) dependence of H(+) transport, whereas a Lys(681) substitution abolished H(+) (but not Na(+)) transport. All four substitutions markedly decreased PPase affinity for the activating Na(+) ion. These results are interpreted in terms of a model that assumes the presence of two Na(+)-binding sites in the channel: one associated with the gate and controlling all enzyme activities and the other located at a distance and controlling only H(+) transport activity. The inherent H(+) transport activity of Na(+)-PPase provides a rationale for its easy evolution toward specific H(+) transport.


Assuntos
Proteínas de Bactérias/metabolismo , Chlorobium/enzimologia , Pirofosfatase Inorgânica/metabolismo , Substituição de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , ATPases Bacterianas Próton-Translocadoras/metabolismo , Transporte Biológico Ativo , Chlorobium/genética , Pirofosfatase Inorgânica/química , Pirofosfatase Inorgânica/genética , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Prótons , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA