Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nat Commun ; 15(1): 4097, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755144

RESUMO

Angiogenesis, the growth of new blood vessels from pre-existing vasculature, is essential for the development of new organ systems, but transcriptional control of angiogenesis remains incompletely understood. Here we show that FOXC1 is essential for retinal angiogenesis. Endothelial cell (EC)-specific loss of Foxc1 impairs retinal vascular growth and expression of Slc3a2 and Slc7a5, which encode the heterodimeric CD98 (LAT1/4F2hc) amino acid transporter and regulate the intracellular transport of essential amino acids and activation of the mammalian target of rapamycin (mTOR). EC-Foxc1 deficiency diminishes mTOR activity, while administration of the mTOR agonist MHY-1485 rescues perturbed retinal angiogenesis. EC-Foxc1 expression is required for retinal revascularization and resolution of neovascular tufts in a model of oxygen-induced retinopathy. Foxc1 is also indispensable for pericytes, a critical component of the blood-retina barrier during retinal angiogenesis. Our findings establish FOXC1 as a crucial regulator of retinal vessels and identify therapeutic targets for treating retinal vascular disease.


Assuntos
Barreira Hematorretiniana , Células Endoteliais , Fatores de Transcrição Forkhead , Neovascularização Retiniana , Animais , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/genética , Neovascularização Retiniana/patologia , Camundongos , Células Endoteliais/metabolismo , Barreira Hematorretiniana/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Pericitos/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Vasos Retinianos/metabolismo , Humanos , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/genética , Camundongos Knockout , Camundongos Endogâmicos C57BL , Retina/metabolismo , Masculino , Angiogênese
2.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766035

RESUMO

Sub-cellular compartmentalization of metabolism has important implications for the local production of metabolites and redox co-factors, as well as pathway regulation. 4'-phosphopantetheinyl (4'PP) groups are essential co-factors derived from coenzyme A and added to target proteins in both the cytoplasm and mitochondria by p hospho p antetheinyl transferase (PPTase) enzymes. Mammals express only one PPTase, thought to localize to the cytoplasm: aminoadipate semialdehyde dehydrogenase phosphopantetheinyl transferase (AASDHPPT); raising the question of how mitochondrial proteins are 4'PP-modified. We found that AASDHPPT is required for mitochondrial respiration and oxidative metabolism via the mitochondrial fatty acid synthesis (mtFAS) pathway. Moreover, we discovered that a pool of AASDHPPT localizes to the mitochondrial matrix via an N-terminal mitochondrial targeting sequence contained within the first 13 amino acids of the protein. Our data show that mitochondrial localization of AASDHPPT is required to support mtFAS function, and further identify two variants in Aasdhppt that are likely pathogenic in humans.

3.
Life Sci Alliance ; 6(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37414529

RESUMO

Impaired development and maintenance of Schlemm's canal (SC) are associated with perturbed aqueous humor outflow and intraocular pressure. The angiopoietin (ANGPT)/TIE2 signaling pathway regulates SC development and maintenance, whereas the molecular mechanisms of crosstalk between SC and the neural crest (NC)-derived neighboring tissue, the trabecular meshwork (TM), are poorly understood. Here, we show NC-specific forkhead box (Fox)c2 deletion in mice results in impaired SC morphogenesis, loss of SC identity, and elevated intraocular pressure. Visible-light optical coherence tomography analysis further demonstrated functional impairment of the SC in response to changes in intraocular pressure in NC-Foxc2 -/- mice, suggesting altered TM biomechanics. Single-cell RNA-sequencing analysis identified that this phenotype is predominately characterized by transcriptional changes associated with extracellular matrix organization and stiffness in TM cell clusters, including increased matrix metalloproteinase expression, which can cleave the TIE2 ectodomain to produce soluble TIE2. Moreover, endothelial-specific Foxc2 deletion impaired SC morphogenesis because of reduced TIE2 expression, which was rescued by deleting the TIE2 phosphatase VE-PTP. Thus, Foxc2 is critical in maintaining SC identity and morphogenesis via TM-SC crosstalk.


Assuntos
Glaucoma , Malha Trabecular , Animais , Camundongos , Humor Aquoso/fisiologia , Glaucoma/genética , Glaucoma/patologia , Pressão Intraocular , Canal de Schlemm , Malha Trabecular/patologia , Malha Trabecular/fisiologia
4.
EMBO Rep ; 24(7): e56030, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37154714

RESUMO

Intestinal ischemia underlies several clinical conditions and can result in the loss of the intestinal mucosal barrier. Ischemia-induced damage to the intestinal epithelium is repaired by stimulation of intestinal stem cells (ISCs), and paracrine signaling from the vascular niche regulates intestinal regeneration. Here, we identify FOXC1 and FOXC2 as essential regulators of paracrine signaling in intestinal regeneration after ischemia-reperfusion (I/R) injury. Vascular endothelial cell (EC)- and lymphatic EC (LEC)-specific deletions of Foxc1, Foxc2, or both in mice worsen I/R-induced intestinal damage by causing defects in vascular regrowth, expression of chemokine CXCL12 and Wnt activator R-spondin 3 (RSPO3) in blood ECs (BECs) and LECs, respectively, and activation of Wnt signaling in ISCs. Both FOXC1 and FOXC2 directly bind to regulatory elements of the CXCL12 and RSPO3 loci in BECs and LECs, respectively. Treatment with CXCL12 and RSPO3 rescues the I/R-induced intestinal damage in EC- and LEC-Foxc mutant mice, respectively. This study provides evidence that FOXC1 and FOXC2 are required for intestinal regeneration by stimulating paracrine CXCL12 and Wnt signaling.


Assuntos
Intestinos , Traumatismo por Reperfusão , Camundongos , Animais , Células Endoteliais/metabolismo , Via de Sinalização Wnt , Mucosa Intestinal , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo
5.
Elife ; 92020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32510325

RESUMO

Mutations in the transcription factor FOXC2 are predominately associated with lymphedema. Herein, we demonstrate a key role for related factor FOXC1, in addition to FOXC2, in regulating cytoskeletal activity in lymphatic valves. FOXC1 is induced by laminar, but not oscillatory, shear and inducible, endothelial-specific deletion impaired postnatal lymphatic valve maturation in mice. However, deletion of Foxc2 induced valve degeneration, which is exacerbated in Foxc1; Foxc2 mutants. FOXC1 knockdown (KD) in human lymphatic endothelial cells increased focal adhesions and actin stress fibers whereas FOXC2-KD increased focal adherens and disrupted cell junctions, mediated by increased ROCK activation. ROCK inhibition rescued cytoskeletal or junctional integrity changes induced by inactivation of FOXC1 and FOXC2 invitro and vivo respectively, but only ameliorated valve degeneration in Foxc2 mutants. These results identify both FOXC1 and FOXC2 as mediators of mechanotransduction in the postnatal lymphatic vasculature and posit cytoskeletal signaling as a therapeutic target in lymphatic pathologies.


Assuntos
Células Endoteliais/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos , Desenvolvimento Embrionário , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Sistema Linfático/crescimento & desenvolvimento , Sistema Linfático/metabolismo , Camundongos , Camundongos Knockout
6.
Front Physiol ; 11: 404, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477160

RESUMO

In addition to its roles in the maintenance of interstitial fluid homeostasis and immunosurveillance, the lymphatic system has a critical role in regulating transport of dietary lipids to the blood circulation. Recent work within the past two decades has identified an important relationship between lymphatic dysfunction and patients with metabolic disorders, such as obesity and type 2 diabetes, in part characterized by abnormal lipid metabolism and transport. Utilization of several genetic mouse models, as well as non-genetic models of diet-induced obesity and metabolic syndrome, has demonstrated that abnormal lymphangiogenesis and poor collecting vessel function, characterized by impaired contractile ability and perturbed barrier integrity, underlie lymphatic dysfunction relating to obesity, diabetes, and metabolic syndrome. Despite the progress made by these models, the contribution of the lymphatic system to metabolic disorders remains understudied and new insights into molecular signaling mechanisms involved are continuously developing. Here, we review the current knowledge related to molecular mechanisms resulting in impaired lymphatic function within the context of obesity and diabetes. We discuss the role of inflammation, transcription factor signaling, vascular endothelial growth factor-mediated signaling, and nitric oxide signaling contributing to impaired lymphangiogenesis and perturbed lymphatic endothelial cell barrier integrity, valve function, and contractile ability in collecting vessels as well as their viability as therapeutic targets to correct lymphatic dysfunction and improve metabolic syndromes.

7.
PLoS One ; 15(6): e0235116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32569321

RESUMO

Here, we examine known GTPase regulators of vesicle trafficking events to assess whether they affect endothelial cell (EC) lumen and tube formation. We identify novel roles for the small GTPases Rab3A, Rab3B, Rab8A, Rab11A, Rab27A, RalA, RalB and caveolin-1 in co-regulating membrane trafficking events that control EC lumen and tube formation. siRNA suppression of individual GTPases such as Rab3A, Rab8A, and RalB markedly inhibit tubulogenesis, while greater blockade is observed with combinations of siRNAs such as Rab3A and Rab3B, Rab8A and Rab11A, and RalA and RalB. These combinations of siRNAs also disrupt very early events in lumen formation including the formation of intracellular vacuoles. In contrast, knockdown of the endocytosis regulator, Rab5A, fails to inhibit EC tube formation. Confocal microscopy and real-time videos reveal that caveolin-1 strongly labels intracellular vacuoles and localizes to the EC apical surface as they fuse to form the luminal membrane. In contrast, Cdc42 and Rab11A localize to a perinuclear, subapical region where intracellular vacuoles accumulate and fuse during lumen formation. Our new data demonstrates that EC tubulogenesis is coordinated by a series of small GTPases to control polarized membrane trafficking events to generate, deliver, and fuse caveolin-1-labeled vacuoles to create the apical membrane surface.


Assuntos
Caveolina 1/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Vacúolos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Membrana Celular/metabolismo , Colágeno/metabolismo , Exocitose , Proteínas de Fluorescência Verde/metabolismo , Humanos , Modelos Biológicos , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo
8.
Front Cell Dev Biol ; 8: 627647, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33521001

RESUMO

The lymphatic system is essential for lipid absorption/transport from the digestive system, maintenance of tissue fluid and protein homeostasis, and immune surveillance. Despite recent progress toward understanding the cellular and molecular mechanisms underlying the formation of the lymphatic vascular system, the nature of lymphatic vessel abnormalities and disease in humans is complex and poorly understood. The mature lymphatic vasculature forms a hierarchical network in which lymphatic endothelial cells (LECs) are joined by functionally specialized cell-cell junctions to maintain the integrity of lymphatic vessels. Blind-ended and highly permeable lymphatic capillaries drain interstitial fluid via discontinuous, button-like LEC junctions, whereas collecting lymphatic vessels, surrounded by intact basement membranes and lymphatic smooth muscle cells, have continuous, zipper-like LEC junctions to transport lymph to the blood circulatory system without leakage. In this review, we discuss the recent advances in our understanding of the mechanisms by which lymphatic button- and zipper-like junctions play critical roles in lymphatic permeability and function in a tissue- and organ-specific manner, including lacteals of the small intestine. We also provide current knowledge related to key pathways and factors such as VEGF and RhoA/ROCK signaling that control lymphatic endothelial cell junctional integrity.

9.
PLoS One ; 12(9): e0184461, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28910325

RESUMO

Here we examine the question of how endothelial cells (ECs) develop their apical membrane surface domain during lumen and tube formation. We demonstrate marked apical membrane targeting of activated Src kinases to this apical domain during early and late stages of this process. Immunostaining for phosphotyrosine or phospho-Src reveals apical membrane staining in intracellular vacuoles initially. This is then followed by vacuole to vacuole fusion events to generate an apical luminal membrane, which is similarly decorated with activated phospho-Src kinases. Functional blockade of Src kinases completely blocks EC lumen and tube formation, whether this occurs during vasculogenic tube assembly or angiogenic sprouting events. Multiple Src kinases participate in this apical membrane formation process and siRNA suppression of Src, Fyn and Yes, but not Lyn, blocks EC lumen formation. We also demonstrate strong apical targeting of Src-GFP and Fyn-GFP fusion proteins and increasing their expression enhances lumen formation. Finally, we show that Src- and Fyn-associated vacuoles track and fuse along a subapically polarized microtubule cytoskeleton, which is highly acetylated. These vacuoles generate the apical luminal membrane in a stereotypically polarized, perinuclear position. Overall, our study identifies a critical role for Src kinases in creating and decorating the EC apical membrane surface during early and late stages of lumen and tube formation, a central event in the molecular control of vascular morphogenesis.


Assuntos
Membrana Celular/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/citologia , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Quinases da Família src/metabolismo , Animais , Células Endoteliais/citologia , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Neovascularização Fisiológica , Fosforilação , Transporte Proteico , Proteínas Proto-Oncogênicas c-fyn/genética , Transdução de Sinais , Vacúolos/metabolismo , Quinases da Família src/genética
10.
Circ Res ; 119(7): 810-26, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27486147

RESUMO

RATIONALE: Vascular tubulogenesis is essential to cardiovascular development. Within initial vascular cords of endothelial cells, apical membranes are established and become cleared of cell-cell junctions, thereby allowing continuous central lumens to open. Rasip1 (Ras-interacting protein 1) is required for apical junction clearance, as well as for regulation of Rho GTPase (enzyme that hydrolyzes GTP) activity. However, it remains unknown how activities of different Rho GTPases are coordinated by Rasip1 to direct tubulogenesis. OBJECTIVE: The aim of this study is to determine the mechanisms downstream of Rasip1 that drive vascular tubulogenesis. METHODS AND RESULTS: Using conditional mouse mutant models and pharmacological approaches, we dissect GTPase pathways downstream of Rasip1. We show that clearance of endothelial cell apical junctions during vascular tubulogenesis depends on Rasip1, as well as the GTPase Cdc42 (cell division control protein 42 homolog) and the kinase Pak4 (serine/threonine-protein kinase 4). Genetic deletion of Rasip1 or Cdc42, or inhibition of Pak4, all blocks endothelial cell tubulogenesis. By contrast, inactivation of RhoA (Ras homologue gene family member A) signaling leads to vessel overexpansion, implicating actomyosin contractility in control of lumen diameter. Interestingly, blocking activity of NMII (nonmuscle myosin II) either before, or after, lumen morphogenesis results in dramatically different tubulogenesis phenotypes, suggesting time-dependent roles. CONCLUSIONS: Rasip1 controls different pools of GTPases, which in turn regulate different pools of NMII to coordinate junction clearance (remodeling) and actomyosin contractility during vascular tubulogenesis. Rasip1 promotes activity of Cdc42 to activate Pak4, which in turn activates NMII, clearing apical junctions. Once lumens open, Rasip1 suppresses actomyosin contractility via inhibition of RhoA by Arhgap29, allowing controlled expansion of vessel lumens during embryonic growth. These findings elucidate the stepwise processes regulated by Rasip1 through downstream Rho GTPases and NMII.


Assuntos
Vasos Sanguíneos/embriologia , Vasos Sanguíneos/metabolismo , Proteínas de Transporte/fisiologia , Miosina Tipo II/metabolismo , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Desenvolvimento Embrionário/fisiologia , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Gravidez
11.
PLoS One ; 11(1): e0147758, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26812085

RESUMO

A critical and understudied property of endothelial cells is their ability to form lumens and tube networks. Although considerable information has been obtained concerning these issues, including the role of Cdc42 and Rac1 and their effectors such as Pak2, Pak4, Par6b, and co-regulators such as integrins, MT1-MMP and Par3; many key questions remain that are necessary to elucidate molecular and signaling requirements for this fundamental process. In this work, we identify new small GTPase regulators of EC tubulogenesis including k-Ras, Rac2 and Rap1b that act in conjunction with Cdc42 as well as the key downstream effectors, IQGAP1, MRCKß, beta-Pix, GIT1, and Rasip1 (which can assemble into multiprotein complexes with key regulators including α2ß1 integrin and MT1-MMP). In addition, we identify the negative regulators, Arhgap31 (by inactivating Cdc42 and Rac) and Rasa1 (by inactivating k-Ras) and the positive regulator, Arhgap29 (by inactivating RhoA) which play a major functional role during the EC tubulogenic process. Human EC siRNA suppression or mouse knockout of Rasip1 leads to identical phenotypes where ECs form extensive cord networks, but cannot generate lumens or tubes. Essential roles for these molecules during EC tubulogenesis include; i) establishment of asymmetric EC cytoskeletal polarization (subapical distribution of acetylated tubulin and basal membrane distribution of F-actin); and ii) directed membrane trafficking of pinocytic vacuoles or other intracellular vesicles along acetylated tubulin tracks to the developing apical membrane surface. Cdc42 co-localizes subapically with acetylated tubulin, while Rac1 and k-Ras strongly label vacuole/ vesicle membranes which accumulate and fuse together in a polarized, perinuclear manner. We observe polarized apical membrane and subapical accumulation of key GTPases and effectors regulating EC lumen formation including Cdc42, Rac1, Rac2, k-Ras, Rap1b, activated c-Raf and Rasip1 to control EC tube network assembly. Overall, this work defines novel key regulators and their functional roles during human EC tubulogenesis.


Assuntos
Citoesqueleto/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Fosfoproteínas/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteína p120 Ativadora de GTPase/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Proteínas Ativadoras de GTPase/antagonistas & inibidores , Proteínas Ativadoras de GTPase/genética , Humanos , Masculino , Camundongos , Microscopia de Fluorescência , Ésteres de Forbol/farmacologia , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Vacúolos/metabolismo , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteína cdc42 de Ligação ao GTP/genética , Proteína p120 Ativadora de GTPase/antagonistas & inibidores , Proteína p120 Ativadora de GTPase/genética , Proteínas rac de Ligação ao GTP/antagonistas & inibidores , Proteínas rac de Ligação ao GTP/genética , Proteínas rap de Ligação ao GTP/antagonistas & inibidores , Proteínas rap de Ligação ao GTP/genética , Proteínas ras/antagonistas & inibidores , Proteínas ras/genética , Proteína RAC2 de Ligação ao GTP
12.
Connect Tissue Res ; 56(5): 392-402, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26305158

RESUMO

This review addresses fundamental mechanisms underlying how capillaries form in three-dimensional extracellular matrices and how endothelial cells (ECs) and pericytes co-assemble to form capillary networks. In addition to playing a critical role in supplying oxygen and nutrients to tissues, recent work suggests that blood vessels supply important signals to facilitate tissue development. Here, we hypothesize that another major function of capillaries is to supply signals to suppress major disease mechanisms including inflammation, infection, thrombosis, hemorrhage, edema, ischemic injury, fibrosis, autoimmune disease and tumor growth/progression. Capillary dysfunction plays a key pathogenic role in many human diseases, and thus, this suppressing function may be attenuated and central toward the initiation and progression of disease. We describe how capillaries form through creation of EC-lined tube networks and vascular guidance tunnels in 3D extracellular matrices. Pericytes recruit to the abluminal EC tube surface within these tunnel spaces, and work together to assemble the vascular basement membrane matrix. These processes occur under serum-free conditions in 3D collagen or fibrin matrices and in response to five key growth factors which are stem cell factor, interleukin-3, stromal-derived factor-1α, fibroblast growth factor-2 and insulin. In addition, we identified a key role for EC-derived platelet-derived growth factor-BB and heparin-binding epidermal growth factor in pericyte recruitment and proliferation to promote EC-pericyte tube co-assembly and vascular basement membrane matrix deposition. A molecular understanding of capillary morphogenesis and maturation should lead to novel therapeutic strategies to repair capillary dysfunction in major human disease contexts including cancer and diabetes.


Assuntos
Células Endoteliais/citologia , Matriz Extracelular/metabolismo , Morfogênese/fisiologia , Neovascularização Fisiológica/fisiologia , Pericitos/citologia , Animais , Membrana Basal/metabolismo , Humanos
13.
Development ; 142(17): 3058-70, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26253403

RESUMO

The Rho family of small GTPases has been shown to be required in endothelial cells (ECs) during blood vessel formation. However, the underlying cellular events controlled by different GTPases remain unclear. Here, we assess the cellular mechanisms by which Cdc42 regulates mammalian vascular morphogenesis and maintenance. In vivo deletion of Cdc42 in embryonic ECs (Cdc42(Tie2KO)) results in blocked lumen formation and endothelial tearing, leading to lethality of mutant embryos by E9-10 due to failed blood circulation. Similarly, inducible deletion of Cdc42 (Cdc42(Cad5KO)) at mid-gestation blocks angiogenic tubulogenesis. By contrast, deletion of Cdc42 in postnatal retinal vessels leads to aberrant vascular remodeling and sprouting, as well as markedly reduced filopodia formation. We find that Cdc42 is essential for organization of EC adhesion, as its loss results in disorganized cell-cell junctions and reduced focal adhesions. Endothelial polarity is also rapidly lost upon Cdc42 deletion, as seen by failed localization of apical podocalyxin (PODXL) and basal actin. We link observed failures to a defect in F-actin organization, both in vitro and in vivo, which secondarily impairs EC adhesion and polarity. We also identify Cdc42 effectors Pak2/4 and N-WASP, as well as the actomyosin machinery, to be crucial for EC actin organization. This work supports the notion of Cdc42 as a central regulator of the cellular machinery in ECs that drives blood vessel formation.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Citoesqueleto/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Neovascularização Fisiológica , Proteína cdc42 de Ligação ao GTP/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Animais , Aorta/metabolismo , Apoptose , Vasos Sanguíneos/citologia , Adesão Celular , Polaridade Celular , Proliferação de Células , Sobrevivência Celular , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Matriz Extracelular/metabolismo , Feminino , Deleção de Genes , Integrases/metabolismo , Camundongos Knockout , Modelos Biológicos , Gravidez , Pseudópodes/metabolismo , Receptor TIE-2/metabolismo , Vasos Retinianos/embriologia , Vasos Retinianos/metabolismo , Saco Vitelino/irrigação sanguínea , Saco Vitelino/metabolismo
14.
Methods Mol Biol ; 1066: 17-28, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23955730

RESUMO

An important advance using in vitro EC tube morphogenesis and maturation models has been the development of systems using serum-free defined media. Using this approach, the growth factors and cytokines which are actually necessary for these events can be determined. The first model developed by our laboratory was such a system where we showed that phorbol ester was needed in order to promote survival and tube morphogenesis in 3D collagen matrices. Recently, we have developed a new system in which the hematopoietic stem cell cytokines, stem cell factor (SCF), interleukin-3 (IL-3), and stromal derived factor-1α (SDF-1α) were added in conjunction with FGF-2 to promote human EC tube morphogenesis in 3D collagen matrices under serum-free defined conditions. This new model using SCF, IL-3, SDF-1α, and FGF-2 also works well following the addition of pericytes where EC tube formation occurs, pericytes are recruited to the tubes, and vascular basement membrane matrix assembly occurs following EC-pericyte interactions. In this chapter, we describe several in vitro assay models that we routinely utilize to investigate the molecular requirements that are critical to EC tube formation and maturation events in 3D extracellular matrix environments.


Assuntos
Células Endoteliais/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Neovascularização Fisiológica , Pericitos/metabolismo , Células Cultivadas , Quimiocina CXCL12/metabolismo , Matriz Extracelular/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo , Humanos , Interleucina-3/metabolismo , Morfogênese/fisiologia , Fator de Células-Tronco/metabolismo
15.
J Biol Chem ; 287(45): 38110-23, 2012 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22955279

RESUMO

Rilpivirine (RPV) is a second generation nonnucleoside reverse transcriptase (RT) inhibitor (NNRTI) that efficiently inhibits HIV-1 resistant to first generation NNRTIs. Virological failure during therapy with RPV and emtricitabine is associated with the appearance of E138K and M184I mutations in RT. Here we investigate the biochemical mechanism of RT inhibition and resistance to RPV. We used two transient kinetics approaches (quench-flow and stopped-flow) to determine how subunit-specific mutations in RT p66 or p51 affect association and dissociation of RPV to RT as well as their impact on binding of dNTP and DNA and the catalytic incorporation of nucleotide. We compared WT with four subunit-specific RT mutants, p66(M184I)/p51(WT), p66(E138K)/p51(E138K), p66(E138K/M184I)/p51(E138K), and p66(M184I)/p51(E138K). Ile-184 in p66 (p66(184I)) decreased the catalytic efficiency of RT (k(pol)/K(d)(.dNTP)), primarily through a decrease in dNTP binding (K(d)(.dNTP)). Lys-138 either in both subunits or in p51 alone abrogated the negative effect of p66(184I) by restoring dNTP binding. Furthermore, p51(138K) reduced RPV susceptibility by altering the ratio of RPV dissociation to RPV association, resulting in a net reduction in RPV equilibrium binding affinity (K(d)(.RPV) = k(off.RPV)/k(on.RPV)). Quantum mechanics/molecular mechanics hybrid molecular modeling revealed that p51(E138K) affects access to the RPV binding site by disrupting the salt bridge between p51(E138) and p66(K101). p66(184I) caused repositioning of the Tyr-183 active site residue and decreased the efficiency of RT, whereas the addition of p51(138K) restored Tyr-183 to a WT-like conformation, thus abrogating the Ile-184-induced functional defects.


Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/enzimologia , Nitrilas/farmacologia , Pirimidinas/farmacologia , Substituição de Aminoácidos , Sítios de Ligação/genética , Farmacorresistência Viral/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/genética , HIV-1/genética , Humanos , Modelos Moleculares , Mutação , Nitrilas/química , Ligação Proteica , Estrutura Terciária de Proteína , Pirimidinas/química , Rilpivirina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA