Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microb Genom ; 9(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38010361

RESUMO

Each year, 15 million infants are born preterm (<37 weeks gestation), representing the leading cause of mortality for children under the age of five. Whilst there is no single cause, factors such as maternal genetics, environmental interactions, and the vaginal microbiome have been associated with an increased risk of preterm birth. Previous studies show that a vaginal microbiota dominated by Lactobacillus is, in contrast to communities containing a mixture of genera, associated with full-term birth. However, this binary principle does not fully consider more nuanced interactions between bacterial strains and the host. Here, through a combination of analyses involving genome-sequenced isolates and strain-resolved metagenomics, we identify that L. jensenii strains from preterm pregnancies are phylogenetically distinct from strains from full-term pregnancies. Detailed analysis reveals several genetic signatures that distinguish preterm birth strains, including genes predicted to be involved in cell wall synthesis, and lactate and acetate metabolism. Notably, we identify a distinct gene cluster involved in cell surface protein synthesis in our preterm strains, and profiling the prevalence of this gene cluster in publicly available genomes revealed it to be predominantly present in the preterm-associated clade. This study contributes to the ongoing search for molecular biomarkers linked to preterm birth and opens up new avenues for exploring strain-level variations and mechanisms that may contribute to preterm birth.


Assuntos
Nascimento Prematuro , Gravidez , Feminino , Criança , Recém-Nascido , Humanos , Nascimento Prematuro/epidemiologia , Nascimento Prematuro/microbiologia , Lactobacillus , Vagina/microbiologia , Bactérias
2.
Nat Commun ; 14(1): 3015, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230981

RESUMO

A significant proportion of the infant gut microbiome is considered to be acquired from the mother during and after birth. Thus begins a lifelong and dynamic relationship with microbes that has an enduring impact on host health. Based on a cohort of 135 mother-infant (F = 72, M = 63) dyads (MicrobeMom: ISRCTN53023014), we investigated the phenomenon of microbial strain transfer, with a particular emphasis on the use of a combined metagenomic-culture-based approach to determine the frequency of strain transfer involving members of the genus Bifidobacterium, including species/strains present at low relative abundance. From the isolation and genome sequencing of over 449 bifidobacterial strains, we validate and augment metagenomics-based evidence to reveal strain transfer in almost 50% of dyads. Factors important in strain transfer include vaginal birth, spontaneous rupture of amniotic membranes, and avoidance of intrapartum antibiotics. Importantly, we reveal that several transfer events are uniquely detected employing either cultivation or metagenomic sequencing, highlighting the requirement for a dual approach to obtain an in-depth insight into this transfer process.


Assuntos
Bifidobacterium , Microbioma Gastrointestinal , Humanos , Lactente , Feminino , Gravidez , Mães , Microbioma Gastrointestinal/genética , Metagenoma/genética , Parto , Fezes/microbiologia
3.
Am J Obstet Gynecol MFM ; 5(7): 100994, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37142190

RESUMO

BACKGROUND: The composition of the infant microbiome can have a variety of short- and long-term implications for health. It is unclear if maternal probiotic supplementation in pregnancy can affect the infant gut microbiome. OBJECTIVE: This study aimed to investigate if maternal supplementation of a formulation of Bifidobacterium breve 702258 from early pregnancy until 3 months postpartum could transfer to the infant gut. STUDY DESIGN: This was a double-blinded, placebo-controlled, randomized controlled trial of B breve 702258 (minimum 1 × 109 colony-forming units) or placebo taken orally from 16 weeks' gestation until 3 months postpartum in healthy pregnant women. The primary outcome was presence of the supplemented strain in infant stool up to 3 months of life, detected by at least 2 of 3 methods: strain-specific polymerase chain reaction, shotgun metagenomic sequencing, or genome sequencing of cultured B breve. A total of 120 individual infants' stool samples were required for 80% power to detect a difference in strain transfer between groups. Rates of detection were compared using the Fisher exact test. RESULTS: A total of 160 pregnant women with average age of 33.6 (3.9) years and mean body mass index of 24.3 (22.5-26.5) kg/m2, of whom 43% were nulliparous (n=58), were recruited from September 2016 to July 2019. Neonatal stool samples were obtained from 135 infants (65 in intervention and 70 in control group). The presence of the supplemented strain was detected through at least 2 methods (polymerase chain reaction and culture) in 2 infants in the intervention group (n=2/65; 3.1%) and none in the control group (n=0; 0%; P=.230). CONCLUSION: Direct mother-to-infant strain transfer of B breve 702258 occurred, albeit infrequently. This study highlights the potential for maternal supplementation to introduce microbial strains into the infant microbiome.


Assuntos
Bifidobacterium breve , Microbioma Gastrointestinal , Probióticos , Recém-Nascido , Humanos , Lactente , Feminino , Gravidez , Adulto , Mães , Idade Gestacional
4.
Comp Clin Path ; 32(3): 347-356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741550

RESUMO

Scrub typhus (ST) is a neglected acute, febrile, infectious disease caused by the intracellular parasite Orientia tsutsugamushi, a gram-negative coccobacillus of the family Rickettsiaceae. Early and precise diagnosis is crucial to reduce the risk of developing disease complications. However, IgM antibody enzyme-linked immunosorbent assay (IgM ELISA) and indirect immunofluorescence assay (IFA) remain essential for diagnosis. However, it could be more helpful for early diagnosis due to the need for uniformity of approach in the diagnostic accuracy studies to determine appropriate ELISA cut-offs for various geographic locations. Hence, we aim to study the O. tsutsugamushi type-specific 56 kilodalton (kDa) protein gene using nested PCR (nPCR) and DNA sequence analysis as a molecular marker for early diagnosis. Out of 10,439 suspected cases, 1147/10,439 (11%) patients were positive for IgM ELISA. A total of 1044/10,439 (10%) samples were randomly tested after nPCR and compared with IgM ELISA results and DNA sequence analysis. Using nested PCR and IgM ELISA methods, 13% (134/1044) and 12% (125/1044) of the samples were positive, respectively. The serology method could not replicate the substantial number of positive cases demonstrated by nPCR; therefore, significant mutual exclusivity of the two techniques requires further investigation. Furthermore, our phylogenetic analysis revealed a clustering of isolates with Karp-related strains, providing insight into the transmission dynamics. Therefore, molecular diagnostic methods may aid in the early diagnosis of infection and enable prompt treatment of ST in endemic regions. Our results show that IgM ELISA can provide complete diagnostic advantages in conjunction with nPCR and can be an essential tool for accurate diagnosis. In addition, the DNA sequencing analysis of the samples showed that Karp-related strains were the main strains. Furthermore, research with samples from various regions in combination with the entire genome sequencing of O. tsutsugamushi is required to understand the infection mechanism better and develop robust early detection methods. Supplementary Information: The online version contains supplementary material available at 10.1007/s00580-023-03443-8.

5.
BMC Mol Cell Biol ; 23(1): 2, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34991443

RESUMO

BACKGROUND: SARS-CoV-2, the causative agent of COVID-19 pandemic is a RNA virus prone to mutations. Formation of a stable binding interface between the Receptor Binding Domain (RBD) of SARS-CoV-2 Spike (S) protein and Angiotensin-Converting Enzyme 2 (ACE2) of host is pivotal for viral entry. RBD has been shown to mutate frequently during pandemic. Although, a few mutations in RBD exhibit enhanced transmission rates leading to rise of new variants of concern, most RBD mutations show sustained ACE2 binding and virus infectivity. Yet, how all these mutations make the binding interface constantly favourable for virus remain enigmatic. This study aims to delineate molecular rearrangements in the binding interface of SARS-CoV-2 RBD mutants. RESULTS: Here, we have generated a mutational and structural landscape of SARS-CoV-2 RBD in first six months of the pandemic. We analyzed 31,403 SARS-CoV-2 genomes randomly across the globe, and identified 444 non-synonymous mutations in RBD that cause 49 distinct amino acid substitutions in contact and non-contact amino acid residues. Molecular phylogenetic analysis suggested independent emergence of RBD mutants. Structural mapping of these mutations on the SARS-CoV-2 Wuhan reference strain RBD and structural comparison with RBDs from bat-CoV, SARS-CoV, and pangolin-CoV, all bound to human or mouse ACE2, revealed several changes in the interfacial interactions in all three binding clusters. Interestingly, interactions mediated via N487 residue in cluster-I and Y449, G496, T500, G502 residues in cluster-III remained largely unchanged in all RBD mutants. Further analysis showed that these interactions are evolutionarily conserved in sarbecoviruses which use ACE2 for entry. Importantly, despite extensive changes in the interface, RBD-ACE2 stability and binding affinities were maintained in all the analyzed mutants. Taken together, these findings reveal how SARS-CoV-2 uses its RBD residues to constantly remodel the binding interface. CONCLUSION: Our study broadly signifies understanding virus-host binding interfaces and their alterations during pandemic. Our findings propose a possible interface remodelling mechanism used by SARS-CoV-2 to escape deleterious mutations. Future investigations will focus on functional validation of in-silico findings and on investigating interface remodelling mechanisms across sarbecoviruses. Thus, in long run, this study may provide novel clues to therapeutically target RBD-ACE2 interface for pan-sarbecovirus infections.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Interações entre Hospedeiro e Microrganismos , Humanos , Camundongos , Mutação , Pandemias , Filogenia , Glicoproteína da Espícula de Coronavírus/genética
6.
Front Immunol ; 12: 740620, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867962

RESUMO

While the immunomodulatory pathways initiated in immune cells contribute to therapeutic response, their activation in cancer cells play a role in cancer progression. Also, many of the aberrantly expressed immunomodulators on cancer cells are considered as therapeutic targets. Here, we introduce host defense peptide (HDP), a known immuomodulator, as a therapeutic agent to target them. The cationic host defense peptides (HDPs), an integral part of the innate immune system, possess membranolytic activity, which imparts antimicrobial and antitumor efficacy to it. They act as immunomodulators by activating the immune cells. Though their antimicrobial function has been recently reassigned to immunoregulation, their antitumor activity is still attributed to its membranolytic activity. This membrane pore formation ability, which is proportional to the concentration of the peptide, also leads to side effects like hemolysis, limiting their therapeutic application. So, despite the identification of a variety of anticancer HDPs, their clinical utility is limited. Though HDPs are shown to exert the immunomodulatory activity through specific membrane targets on immune cells, their targets on cancer cells are unknown. We show that SSTP1, a novel HDP identified by shotgun cloning, binds to the active IL6/IL6Rα/gp130 complex on cancer cells, rearranging the active site residues. In contrast to the IL6 blockers inhibiting JAK/STAT activity, SSTP1 shifts the proliferative IL6/JAK/STAT signaling to the apoptotic IL6/JNK/AP1 pathway. In IL6Rα-overexpressing cancer cells, SSTP1 induces apoptosis at low concentration through JNK pathway, without causing significant membrane disruption. We highlight the importance of immunomodulatory pathways in cancer apoptosis, apart from its established role in immune cell regulation and cancer cell proliferation. Our study suggests that identification of the membrane targets for the promising anticancer HDPs might lead to the identification of new drugs for targeted therapy.


Assuntos
Proteínas de Anfíbios/imunologia , Peptídeos Catiônicos Antimicrobianos/imunologia , Anuros , Apoptose/imunologia , Interleucina-6/imunologia , Neoplasias/imunologia , Animais , Linhagem Celular Tumoral , Humanos
7.
Virol J ; 18(1): 96, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33952289

RESUMO

BACKGROUND: Human parvovirus B19V is a DNA virus, and a member of the family Parvoviridae, that causes various clinical manifestations, from asymptomatic to persistent infection that is associated with different autoimmune diseases. The parvovirus B19 evolves with a very high mutation rate that is closer to those of existing RNA viruses. Globally circulating B19V is currently classified into three genotypes, but their distribution is not spatially and temporally correlated. Except for a few recent reports on B19V entry into the human host and its genetic diversity, there is a lack of sufficient studies on this virus from distinct geographical locations and no clear understanding of its evolution has been documented. METHODS: To better understand the evolution of the Human parvo B19V virus from India's southern part, a geographically distinct location with no reports of B19V genomes, we have screened for B19V in 456 suspected cases using VP1/2 surface marker genes, and its characteristics were studied in detail. Amongst 456 clinically suspected B19V samples, 7.2% (33/456) were found positive by nested PCR (nPCR) were subsequently validated by real-time PCR, Sanger sequencing, and metagenome analysis. RESULTS: Human parvovirus B19 infection was shown among 33 of 456 patients when tested by nPCR; 30 among these were also positive by qPCR and were subsequently confirmed by sequencing 75% nPCR positive samples and 76% qPCR positive samples were from patients with age. ≥ 50 years respectively (Additional file 1: Table S1). The complete VP1/2 gene assembly from the South Indian strain showed three novel mutations (T122A, V128I, I283V), which might significantly impact the stability and virulence of the B19V virus circulating in this part of the world. These mutations might be crucial for its adaptive evolutionary strategies facilitating the spread and infectivity potential of the virus. In maximum likelihood phylogeny of VP1/2 sequences, the South Indian B19V strain forms a separate clade closer to the existing genotype two strains circulating worldwide. CONCLUSION: Our study contributes to a better understanding of the human parvovirus's genetic and evolutionary characteristics in South India. Also, it highlights the possibility that a positive selection pressure acting on VP1/2 could increase the survival and replication capabilities of the viruses.


Assuntos
Infecções por Parvoviridae , Parvovirus B19 Humano , Anticorpos Antivirais , DNA Viral/genética , Humanos , Índia/epidemiologia , Infecções por Parvoviridae/epidemiologia , Parvovirus B19 Humano/genética , Parvovirus B19 Humano/imunologia , Infecção Persistente , Reação em Cadeia da Polimerase em Tempo Real
8.
Microorganisms ; 7(10)2019 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-31635115

RESUMO

Extreme flooding is one of the major risk factors for human health, and it can significantly influence the microbial communities and enhance the mobility of infectious disease agents within the affected areas. The flood crisis in 2018 was one of the severe natural calamities recorded in the southern state of India (Kerala) that significantly affected its economy and ecological habitat. We utilized a combination of shotgun metagenomics and bioinformatics approaches to understand the bacterial profile and the abundance of pathogenic and antibiotic-resistant bacteria in extremely flooded areas of Kuttanad, Kerala (4-10 feet below sea level). Here we report the bacterial profiles of flooded sites that are abundant with virulent and resistant bacteria. The flooded sites were heavily contaminated with faecal contamination indicators such as Escherichia coli and Enterococcus faecalis and multidrug-resistant strains of Pseudomonas aeruginosa, Salmonella typhi/typhimurium, Klebsiella pneumoniae, Vibrio cholerae. The resistome of the flooded sites contains 103 known resistant genes, of which 38% are plasmid-encoded, where most of them are known to be associated with pathogenic bacteria. Our results reveal an overall picture of the bacterial profile and resistome of sites following a devastating flood event, which might increase the levels of pathogens and its associated risks.

9.
Genome Biol Evol ; 11(10): 2917-2926, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31589296

RESUMO

Multidrug-resistant Staphylococcus aureus is a leading concern worldwide. Coagulase-Negative Staphylococci are claimed to be the reservoir and source of important resistant elements in S. aureus. However, the origin and evolutionary route of resistant genes in S. aureus are still remaining unknown. Here, we performed a detailed phylogenomic analysis of 152 completely sequenced S. aureus strains in comparison with 7,529 non-Staphylococcus aureus reference bacterial genomes. Our results reveal that S. aureus has a large open pan-genome where 97 (55%) of its known resistant-related genes belonging to its accessory genome. Among these genes, 47 (27%) were located within the Staphylococcal Cassette Chromosome mec (SCCmec), a transposable element responsible for resistance against major classes of antibiotics including beta-lactams, macrolides, and aminoglycosides. However, the physically linked mec-box genes (MecA-MecR-MecI) that are responsible for the maintenance of SCCmec elements is not unique to S. aureus, instead it is widely distributed within Staphylococcaceae family. The phyletic patterns of SCCmec-encoded resistant genes in Staphylococcus species are significantly different from that of its core genes indicating frequent exchange of these genes between Staphylococcus species. Our in-depth analysis of SCCmec-resistant gene phylogenies reveals that genes such as blaZ, ble, kmA, and tetK that are responsible for beta-lactam, bleomycin, kanamycin, and tetracycline resistance in S. aureus were laterally transferred from non-Staphylococcus sources. In addition, at least 11 non-SCCmec-encoded resistant genes in S. aureus, were laterally acquired from distantly related species. Our study evidently shows that gene transfers played a crucial role in shaping the evolution of antibiotic resistance in S. aureus.


Assuntos
Farmacorresistência Bacteriana/genética , Evolução Molecular , Staphylococcus aureus/genética , Transferência Genética Horizontal , Genoma Bacteriano , Filogenia , Staphylococcus aureus/classificação , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA