Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Curr Res Toxicol ; 5: 100121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37701072

RESUMO

The rise of artificial intelligence (AI) based algorithms has gained a lot of interest in the pharmaceutical development field. Our study demonstrates utilization of traditional machine learning techniques such as random forest (RF), support-vector machine (SVM), extreme gradient boosting (XGBoost), deep neural network (DNN) as well as advanced deep learning techniques like gated recurrent unit-based DNN (GRU-DNN) and graph neural network (GNN), towards predicting human ether-á-go-go related gene (hERG) derived toxicity. Using the largest hERG dataset derived to date, we have utilized 203,853 and 87,366 compounds for training and testing the models, respectively. The results show that GNN, SVM, XGBoost, DNN, RF, and GRU-DNN all performed well, with validation set AUC ROC scores equals 0.96, 0.95, 0.95, 0.94, 0.94 and 0.94, respectively. The GNN was found to be the top performing model based on predictive power and generalizability. The GNN technique is free of any feature engineering steps while having a minimal human intervention. The GNN approach may serve as a basis for comprehensive automation in predictive toxicology. We believe that the models presented here may serve as a promising tool, both for academic institutes as well as pharmaceutical industries, in predicting hERG-liability in new molecular structures.

2.
J Chem Inf Model ; 63(17): 5433-5445, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37616385

RESUMO

Oxidative stress is the consequence of an abnormal increase of reactive oxygen species (ROS). ROS are generated mainly during the metabolism in both normal and pathological conditions as well as from exposure to xenobiotics. Xenobiotics can, on the one hand, disrupt molecular machinery involved in redox processes and, on the other hand, reduce the effectiveness of the antioxidant activity. Such dysregulation may lead to oxidative damage when combined with oxidative stress overpassing the cell capacity to detoxify ROS. In this work, a green fluorescent protein (GFP)-tagged nuclear factor erythroid 2-related factor 2 (NRF2)-regulated sulfiredoxin reporter (Srxn1-GFP) was used to measure the antioxidant response of HepG2 cells to a large series of drug and drug-like compounds (2230 compounds). These compounds were then classified as positive or negative depending on cellular response and distributed among different modeling groups to establish structure-activity relationship (SAR) models. A selection of models was used to prospectively predict oxidative stress induced by a new set of compounds subsequently experimentally tested to validate the model predictions. Altogether, this exercise exemplifies the different challenges of developing SAR models of a phenotypic cellular readout, model combination, chemical space selection, and results interpretation.


Assuntos
Estresse Oxidativo , Xenobióticos , Humanos , Espécies Reativas de Oxigênio , Células Hep G2 , Estudos Prospectivos , Relação Estrutura-Atividade
3.
Altern Lab Anim ; 51(3): 204-209, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37184299

RESUMO

An in silico method has been developed that permits the binary differentiation between pure liquids causing serious eye damage or eye irritation, and pure liquids with no need for such classification, according to the UN GHS system. The method is based on the finding that the Hansen Solubility Parameters (HSP) of a liquid are collectively important predictors for eye irritation. Thus, by applying a two-tier approach in which in silico-predicted pKa values (firstly) and a trained model based solely on in silico-predicted HSP data (secondly) were used, we have developed, and validated, a fully in silico approach for predicting the outcome of a Draize test (in terms of UN GHS Cat. 1/Cat. 2A/Cat. 2B or UN GHS No Cat.) with high validation set performance (sensitivity = 0.846, specificity = 0.818, balanced accuracy = 0.832) using SMILES only. The method is applicable to pure non-ionic liquids with molecular weight below 500 g/mol, fewer than six hydrogen bond donors (e.g. nitrogen-hydrogen or oxygen-hydrogen bonds) and fewer than eleven hydrogen bond acceptors (e.g. nitrogen or oxygen atoms). Due to its fully in silico characteristics, this method can be applied to pure liquids that are still at the desktop design stage and not yet in production.


Assuntos
Olho , Testes de Toxicidade , Animais , Solubilidade , Irritantes/toxicidade , Alternativas aos Testes com Animais
4.
Chem Res Toxicol ; 36(1): 53-65, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36534483

RESUMO

Receptor-mediated molecular initiating events (MIEs) and their relevance in endocrine activity (EA) have been highlighted in literature. More than 15 receptors have been associated with neurodevelopmental adversity and metabolic disruption. MIEs describe chemical interactions with defined biological outcomes, a relationship that could be described with quantitative structure-activity relationship (QSAR) models. QSAR uncertainty can be assessed using the conformal prediction (CP) framework, which provides similarity (i.e., nonconformity) scores relative to the defined classes per prediction. CP calibration can indirectly mitigate data imbalance during model development, and the nonconformity scores serve as intrinsic measures of chemical applicability domain assessment during screening. The focus of this work was to propose an in silico predictive strategy for EA. First, 23 QSAR models for MIEs associated with EA were developed using high-throughput data for 14 receptors. To handle the data imbalance, five protocols were compared, and CP provided the most balanced class definition. Second, the developed QSAR models were applied to a large data set (∼55,000 chemicals), comprising chemicals representative of potential risk for human exposure. Using CP, it was possible to assess the uncertainty of the screening results and identify model strengths and out of domain chemicals. Last, two clustering methods, t-distributed stochastic neighbor embedding and Tanimoto similarity, were used to identify compounds with potential EA using known endocrine disruptors as reference. The cluster overlap between methods produced 23 chemicals with suspected or demonstrated EA potential. The presented models could be utilized for first-tier screening and identification of compounds with potential biological activity across the studied MIEs.


Assuntos
Disruptores Endócrinos , Substâncias Perigosas , Humanos , Substâncias Perigosas/toxicidade , Relação Quantitativa Estrutura-Atividade , Conformação Molecular , Disruptores Endócrinos/toxicidade
5.
Environ Sci Technol ; 56(12): 8363-8372, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35561338

RESUMO

Data on toxic effects are at large missing the prevailing understanding of the risks of industrial chemicals. Thyroid hormone (TH) system disruption includes interferences of the life cycle of the thyroid hormones and may occur in various organs. In the current study, high-throughput screening data available for 14 putative molecular initiating events of adverse outcome pathways, related to disruption of the TH system, were used to develop 19 in silico models for identification of potential thyroid hormone system-disrupting chemicals. The conformal prediction framework with the underlying Random Forest was used as a wrapper for the models allowing for setting the desired confidence level and controlling the error rate of predictions. The trained models were then applied to two different databases: (i) an in-house database comprising xenobiotics identified in human blood and ii) currently used chemicals registered in the Swedish Product Register, which have been predicted to have a high exposure index to consumers. The application of these models showed that among currently used chemicals, fewer were overall predicted as active compared to chemicals identified in human blood. Chemicals of specific concern for TH disruption were identified from both databases based on their predicted activity.


Assuntos
Disruptores Endócrinos , Simulação por Computador , Disruptores Endócrinos/toxicidade , Ensaios de Triagem em Larga Escala , Humanos , Hormônios Tireóideos/metabolismo , Xenobióticos
6.
Sci Rep ; 12(1): 7244, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508546

RESUMO

Machine learning models are widely applied to predict molecular properties or the biological activity of small molecules on a specific protein. Models can be integrated in a conformal prediction (CP) framework which adds a calibration step to estimate the confidence of the predictions. CP models present the advantage of ensuring a predefined error rate under the assumption that test and calibration set are exchangeable. In cases where the test data have drifted away from the descriptor space of the training data, or where assay setups have changed, this assumption might not be fulfilled and the models are not guaranteed to be valid. In this study, the performance of internally valid CP models when applied to either newer time-split data or to external data was evaluated. In detail, temporal data drifts were analysed based on twelve datasets from the ChEMBL database. In addition, discrepancies between models trained on publicly-available data and applied to proprietary data for the liver toxicity and MNT in vivo endpoints were investigated. In most cases, a drastic decrease in the validity of the models was observed when applied to the time-split or external (holdout) test sets. To overcome the decrease in model validity, a strategy for updating the calibration set with data more similar to the holdout set was investigated. Updating the calibration set generally improved the validity, restoring it completely to its expected value in many cases. The restored validity is the first requisite for applying the CP models with confidence. However, the increased validity comes at the cost of a decrease in model efficiency, as more predictions are identified as inconclusive. This study presents a strategy to recalibrate CP models to mitigate the effects of data drifts. Updating the calibration sets without having to retrain the model has proven to be a useful approach to restore the validity of most models.


Assuntos
Bioensaio , Aprendizado de Máquina , Calibragem , Conformação Molecular
7.
J Chem Inf Model ; 62(24): 6323-6335, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-35274943

RESUMO

Integration of statistical learning methods with structure-based modeling approaches is a contemporary strategy to identify novel lead compounds in drug discovery. Hepatic organic anion transporting polypeptides (OATP1B1, OATP1B3, and OATP2B1) are classical off-targets, and it is well recognized that their ability to interfere with a wide range of chemically unrelated drugs, environmental chemicals, or food additives can lead to unwanted adverse effects like liver toxicity and drug-drug or drug-food interactions. Therefore, the identification of novel (tool) compounds for hepatic OATPs by virtual screening approaches and subsequent experimental validation is a major asset for elucidating structure-function relationships of (related) transporters: they enhance our understanding about molecular determinants and structural aspects of hepatic OATPs driving ligand binding and selectivity. In the present study, we performed a consensus virtual screening approach by using different types of machine learning models (proteochemometric models, conformal prediction models, and XGBoost models for hepatic OATPs), followed by molecular docking of preselected hits using previously established structural models for hepatic OATPs. Screening the diverse REAL drug-like set (Enamine) shows a comparable hit rate for OATP1B1 (36% actives) and OATP1B3 (32% actives), while the hit rate for OATP2B1 was even higher (66% actives). Percentage inhibition values for 44 selected compounds were determined using dedicated in vitro assays and guided the prioritization of several highly potent novel hepatic OATP inhibitors: six (strong) OATP2B1 inhibitors (IC50 values ranging from 0.04 to 6 µM), three OATP1B1 inhibitors (2.69 to 10 µM), and five OATP1B3 inhibitors (1.53 to 10 µM) were identified. Strikingly, two novel OATP2B1 inhibitors were uncovered (C7 and H5) which show high affinity (IC50 values: 40 nM and 390 nM) comparable to the recently described estrone-based inhibitor (IC50 = 41 nM). A molecularly detailed explanation for the observed differences in ligand binding to the three transporters is given by means of structural comparison of the detected binding sites and docking poses.


Assuntos
Transportadores de Ânions Orgânicos , Transportadores de Ânions Orgânicos/metabolismo , Transportador 1 de Ânion Orgânico Específico do Fígado/metabolismo , Simulação de Acoplamento Molecular , Ligantes , Membro 1B3 da Família de Transportadores de Ânion Orgânico Carreador de Soluto/metabolismo , Transporte Biológico/fisiologia , Fígado/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Peptídeos/metabolismo , Interações Medicamentosas
8.
Toxicol In Vitro ; 79: 105269, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34757180

RESUMO

Read-across approaches often remain inconclusive as they do not provide sufficient evidence on a common mode of action across the category members. This read-across case study on thirteen, structurally similar, branched aliphatic carboxylic acids investigates the concept of using human-based new approach methods, such as in vitro and in silico models, to demonstrate biological similarity. Five out of the thirteen analogues have preclinical in vivo studies. Three out of them induced lipid accumulation or hypertrophy in preclinical studies with repeated exposure, which leads to the read-across hypothesis that the analogues can potentially induce hepatic steatosis. To confirm the selection of analogues, the expression patterns of the induced differentially expressed genes (DEGs) were analysed in a human liver model. With increasing dose, the expression pattern within the tested analogues got more similar, which serves as a first indication of a common mode of action and suggests differences in the potency of the analogues. Hepatic steatosis is a well-known adverse outcome, for which over 55 adverse outcome pathways have been identified. The resulting adverse outcome pathway (AOP) network, comprised a total 43 MIEs/KEs and enabled the design of an in vitro testing battery. From the AOP network, ten MIEs, early and late KEs were tested to systematically investigate a common mode of action among the grouped compounds. The targeted testing of AOP specific MIE/KEs shows that biological activity in the category decreases with side chain length. A similar trend was evident in measuring liver alterations in zebra fish embryos. However, activation of single MIEs or early KEs at in vivo relevant doses did not necessarily progress to the late KE "lipid accumulation". KEs not related to the read-across hypothesis, testing for example general mitochondrial stress responses in liver cells, showed no trend or biological similarity. Testing scope is a key issue in the design of in vitro test batteries. The Dempster-Shafer decision theory predicted those analogues with in vivo reference data correctly using one human liver model or the CALUX reporter assays. The case study shows that the read-across hypothesis is the key element to designing the testing strategy. In the case of a good mechanistic understanding, an AOP facilitates the selection of reliable human in vitro models to demonstrate a common mode of action. Testing DEGs, MIEs and early KEs served to show biological similarity, whereas the late KEs become important for confirmation, as progression from MIEs to AO is not always guaranteed.


Assuntos
Rotas de Resultados Adversos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/toxicidade , Animais , Simulação por Computador , Fígado Gorduroso/induzido quimicamente , Perfilação da Expressão Gênica , Humanos , Peixe-Zebra
9.
Molecules ; 28(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36615411

RESUMO

Molecular structure property modeling is an increasingly important tool for predicting compounds with desired properties due to the expensive and resource-intensive nature and the problem of toxicity-related attrition in late phases during drug discovery and development. Lately, the interest for applying deep learning techniques has increased considerably. This investigation compares the traditional physico-chemical descriptor and machine learning-based approaches through autoencoder generated descriptors to two different descriptor-free, Simplified Molecular Input Line Entry System (SMILES) based, deep learning architectures of Bidirectional Encoder Representations from Transformers (BERT) type using the Mondrian aggregated conformal prediction method as overarching framework. The results show for the binary CATMoS non-toxic and very-toxic datasets that for the former, almost equally balanced, dataset all methods perform equally well while for the latter dataset, with an 11-fold difference between the two classes, the MolBERT model based on a large pre-trained network performs somewhat better compared to the rest with high efficiency for both classes (0.93-0.94) as well as high values for sensitivity, specificity and balanced accuracy (0.86-0.87). The descriptor-free, SMILES-based, deep learning BERT architectures seem capable of producing well-balanced predictive models with defined applicability domains. This work also demonstrates that the class imbalance problem is gracefully handled through the use of Mondrian conformal prediction without the use of over- and/or under-sampling, weighting of classes or cost-sensitive methods.


Assuntos
Aprendizado Profundo , Aprendizado de Máquina , Estrutura Molecular , Descoberta de Drogas/métodos
10.
J Cheminform ; 13(1): 77, 2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34600569

RESUMO

Confidence predictors can deliver predictions with the associated confidence required for decision making and can play an important role in drug discovery and toxicity predictions. In this work we investigate a recently introduced version of conformal prediction, synergy conformal prediction, focusing on the predictive performance when applied to bioactivity data. We compare the performance to other variants of conformal predictors for multiple partitioned datasets and demonstrate the utility of synergy conformal predictors for federated learning where data cannot be pooled in one location. Our results show that synergy conformal predictors based on training data randomly sampled with replacement can compete with other conformal setups, while using completely separate training sets often results in worse performance. However, in a federated setup where no method has access to all the data, synergy conformal prediction is shown to give promising results. Based on our study, we conclude that synergy conformal predictors are a valuable addition to the conformal prediction toolbox.

11.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34451887

RESUMO

In recent years, a number of machine learning models for the prediction of the skin sensitization potential of small organic molecules have been reported and become available. These models generally perform well within their applicability domains but, as a result of the use of molecular fingerprints and other non-intuitive descriptors, the interpretability of the existing models is limited. The aim of this work is to develop a strategy to replace the non-intuitive features by predicted outcomes of bioassays. We show that such replacement is indeed possible and that as few as ten interpretable, predicted bioactivities are sufficient to reach competitive performance. On a holdout data set of 257 compounds, the best model ("Skin Doctor CP:Bio") obtained an efficiency of 0.82 and an MCC of 0.52 (at the significance level of 0.20). Skin Doctor CP:Bio is available free of charge for academic research. The modeling strategies explored in this work are easily transferable and could be adopted for the development of more interpretable machine learning models for the prediction of the bioactivity and toxicity of small organic compounds.

12.
J Chem Inf Model ; 61(7): 3255-3272, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34153183

RESUMO

Computational methods such as machine learning approaches have a strong track record of success in predicting the outcomes of in vitro assays. In contrast, their ability to predict in vivo endpoints is more limited due to the high number of parameters and processes that may influence the outcome. Recent studies have shown that the combination of chemical and biological data can yield better models for in vivo endpoints. The ChemBioSim approach presented in this work aims to enhance the performance of conformal prediction models for in vivo endpoints by combining chemical information with (predicted) bioactivity assay outcomes. Three in vivo toxicological endpoints, capturing genotoxic (MNT), hepatic (DILI), and cardiological (DICC) issues, were selected for this study due to their high relevance for the registration and authorization of new compounds. Since the sparsity of available biological assay data is challenging for predictive modeling, predicted bioactivity descriptors were introduced instead. Thus, a machine learning model for each of the 373 collected biological assays was trained and applied on the compounds of the in vivo toxicity data sets. Besides the chemical descriptors (molecular fingerprints and physicochemical properties), these predicted bioactivities served as descriptors for the models of the three in vivo endpoints. For this study, a workflow based on a conformal prediction framework (a method for confidence estimation) built on random forest models was developed. Furthermore, the most relevant chemical and bioactivity descriptors for each in vivo endpoint were preselected with lasso models. The incorporation of bioactivity descriptors increased the mean F1 scores of the MNT model from 0.61 to 0.70 and for the DICC model from 0.72 to 0.82 while the mean efficiencies increased by roughly 0.10 for both endpoints. In contrast, for the DILI endpoint, no significant improvement in model performance was observed. Besides pure performance improvements, an analysis of the most important bioactivity features allowed detection of novel and less intuitive relationships between the predicted biological assay outcomes used as descriptors and the in vivo endpoints. This study presents how the prediction of in vivo toxicity endpoints can be improved by the incorporation of biological information-which is not necessarily captured by chemical descriptors-in an automated workflow without the need for adding experimental workload for the generation of bioactivity descriptors as predicted outcomes of bioactivity assays were utilized. All bioactivity CP models for deriving the predicted bioactivities, as well as the in vivo toxicity CP models, can be freely downloaded from https://doi.org/10.5281/zenodo.4761225.


Assuntos
Fígado , Aprendizado de Máquina , Bioensaio , Conformação Molecular
13.
J Chem Inf Model ; 61(6): 2648-2657, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34043352

RESUMO

Predictive modeling for toxicity can help reduce risks in a range of applications and potentially serve as the basis for regulatory decisions. However, the utility of these predictions can be limited if the associated uncertainty is not adequately quantified. With recent studies showing great promise for deep learning-based models also for toxicity predictions, we investigate the combination of deep learning-based predictors with the conformal prediction framework to generate highly predictive models with well-defined uncertainties. We use a range of deep feedforward neural networks and graph neural networks in a conformal prediction setting and evaluate their performance on data from the Tox21 challenge. We also compare the results from the conformal predictors to those of the underlying machine learning models. The results indicate that highly predictive models can be obtained that result in very efficient conformal predictors even at high confidence levels. Taken together, our results highlight the utility of conformal predictors as a convenient way to deliver toxicity predictions with confidence, adding both statistical guarantees on the model performance as well as better predictions of the minority class compared to the underlying models.


Assuntos
Aprendizado Profundo , Humanos , Aprendizado de Máquina , Conformação Molecular , Redes Neurais de Computação , Incerteza
14.
J Cheminform ; 13(1): 35, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33926567

RESUMO

Machine learning methods are widely used in drug discovery and toxicity prediction. While showing overall good performance in cross-validation studies, their predictive power (often) drops in cases where the query samples have drifted from the training data's descriptor space. Thus, the assumption for applying machine learning algorithms, that training and test data stem from the same distribution, might not always be fulfilled. In this work, conformal prediction is used to assess the calibration of the models. Deviations from the expected error may indicate that training and test data originate from different distributions. Exemplified on the Tox21 datasets, composed of chronologically released Tox21Train, Tox21Test and Tox21Score subsets, we observed that while internally valid models could be trained using cross-validation on Tox21Train, predictions on the external Tox21Score data resulted in higher error rates than expected. To improve the prediction on the external sets, a strategy exchanging the calibration set with more recent data, such as Tox21Test, has successfully been introduced. We conclude that conformal prediction can be used to diagnose data drifts and other issues related to model calibration. The proposed improvement strategy-exchanging the calibration data only-is convenient as it does not require retraining of the underlying model.

15.
ALTEX ; 38(2): 198-214, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33118607

RESUMO

Animal testing for toxicity assessment of chemicals and pharmaceuticals must take the 3R principles into consideration. During toxicity testing in vivo, clinical signs are used to monitor animal welfare and to inform about potential toxicity. This study investigated possible associations between clinical signs, body weight change and histopathological findings observed after necropsy. We hypothesized that clinical signs and body weight loss observed during experiments could be used as early markers of organ toxicity. This represents a potential for refinement in terms of improved study man­agement and decreasing of pain and distress experienced during animal experiments. Data from three sequential toxicity studies of an anti-cancer drug candidate in rats were analyzed using the multivariate partial least squares (PLS) regression method. Associations with a predictive value over 80% were found between the occurrence of mild to severe clinical signs and histopathological findings in the thymus, testes, epididymides and bone marrow. Piloerection, eyes half shut and slightly decreased motor activity were most strongly associated with the pathological findings. A 5% body weight loss was found to be a strong empirical predictor of pathological findings but could also be predicted accurately by clinical signs. Thus, we suggest using mild clinical signs and a 5% body weight loss as toxicity markers and as a non-invasive surveillance tool to monitor research animal welfare in toxicity testing. These clinical signs may also enable reduction of animal use due to their informative potential to support scientific decisions regarding drug candidate selection, dose setting, study design, and toxicity assessment.


Assuntos
Experimentação Animal , Testes de Toxicidade , Bem-Estar do Animal , Animais , Ratos
16.
Chem Res Toxicol ; 34(2): 656-668, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33347274

RESUMO

Hepatic steatosis (fatty liver) is a severe liver disease induced by the excessive accumulation of fatty acids in hepatocytes. In this study, we developed reliable in silico models for predicting hepatic steatosis on the basis of an in vivo data set of 1041 compounds measured in rodent studies with repeated oral exposure. The imbalanced nature of the data set (1:8, with the "steatotic" compounds belonging to the minority class) required the use of meta-classifiers-bagging with stratified under-sampling and Mondrian conformal prediction-on top of the base classifier random forest. One major goal was the investigation of the influence of different descriptor combinations on model performance (tested by predicting an external validation set): physicochemical descriptors (RDKit), ToxPrint features, as well as predictions from in silico nuclear receptor and transporter models. All models based upon descriptor combinations including physicochemical features led to reasonable balanced accuracies (BAs between 0.65 and 0.69 for the respective models). Combining physicochemical features with transporter predictions and further with ToxPrint features gave the best performing model (BAs up to 0.7 and efficiencies of 0.82). Whereas both meta-classifiers proved useful for this highly imbalanced toxicity data set, the conformal prediction framework also guarantees the error level and thus might be favored for future studies in the field of predictive toxicology.


Assuntos
Simulação por Computador , Fígado Gorduroso/induzido quimicamente , Hidrocarbonetos Acíclicos/efeitos adversos , Hidrocarbonetos Aromáticos/efeitos adversos , Aprendizado de Máquina , Bases de Dados Factuais , Humanos , Modelos Moleculares , Conformação Molecular
17.
Chem Res Toxicol ; 34(2): 330-344, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33295759

RESUMO

Skin sensitization potential or potency is an important end point in the safety assessment of new chemicals and new chemical mixtures. Formerly, animal experiments such as the local lymph node assay (LLNA) were the main form of assessment. Today, however, the focus lies on the development of nonanimal testing approaches (i.e., in vitro and in chemico assays) and computational models. In this work, we investigate, based on publicly available LLNA data, the ability of aggregated, Mondrian conformal prediction classifiers to differentiate between non- sensitizing and sensitizing compounds as well as between two levels of skin sensitization potential (weak to moderate sensitizers, and strong to extreme sensitizers). The advantage of the conformal prediction framework over other modeling approaches is that it assigns compounds to activity classes only if a defined minimum level of confidence is reached for the individual predictions. This eliminates the need for applicability domain criteria that often are arbitrary in their nature and less flexible. Our new binary classifier, named Skin Doctor CP, differentiates nonsensitizers from sensitizers with a higher reliability-to-efficiency ratio than the corresponding nonconformal prediction workflow that we presented earlier. When tested on a set of 257 compounds at the significance levels of 0.10 and 0.30, the model reached an efficiency of 0.49 and 0.92, and an accuracy of 0.83 and 0.75, respectively. In addition, we developed a ternary classification workflow to differentiate nonsensitizers, weak to moderate sensitizers, and strong to extreme sensitizers. Although this model achieved satisfactory overall performance (accuracies of 0.90 and 0.73, and efficiencies of 0.42 and 0.90, at significance levels 0.10 and 0.30, respectively), it did not obtain satisfying class-wise results (at a significance level of 0.30, the validities obtained for nonsensitizers, weak to moderate sensitizers, and strong to extreme sensitizers were 0.70, 0.58, and 0.63, respectively). We argue that the model is, in consequence, unable to reliably identify strong to extreme sensitizers and suggest that other ternary models derived from the currently accessible LLNA data might suffer from the same problem. Skin Doctor CP is available via a public web service at https://nerdd.zbh.uni-hamburg.de/skinDoctorII/.


Assuntos
Compostos Orgânicos/farmacologia , Testes Cutâneos , Pele/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Bases de Dados Factuais , Ensaio Local de Linfonodo , Camundongos , Estrutura Molecular , Compostos Orgânicos/química , Bibliotecas de Moléculas Pequenas/química
18.
J Pharm Sci ; 110(1): 42-49, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33075380

RESUMO

One of the challenges with predictive modeling is how to quantify the reliability of the models' predictions on new objects. In this work we give an introduction to conformal prediction, a framework that sits on top of traditional machine learning algorithms and which outputs valid confidence estimates to predictions from QSAR models in the form of prediction intervals that are specific to each predicted object. For regression, a prediction interval consists of an upper and a lower bound. For classification, a prediction interval is a set that contains none, one, or many of the potential classes. The size of the prediction interval is affected by a user-specified confidence/significance level, and by the nonconformity of the predicted object; i.e., the strangeness as defined by a nonconformity function. Conformal prediction provides a rigorous and mathematically proven framework for in silico modeling with guarantees on error rates as well as a consistent handling of the models' applicability domain intrinsically linked to the underlying machine learning model. Apart from introducing the concepts and types of conformal prediction, we also provide an example application for modeling ABC transporters using conformal prediction, as well as a discussion on general implications for drug discovery.


Assuntos
Descoberta de Drogas , Aprendizado de Máquina , Algoritmos , Conformação Molecular , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes
20.
Biomed Pharmacother ; 130: 110582, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32763818

RESUMO

Given the speed of viral infection spread, repurposing of existing drugs has been given the highest priority in combating the ongoing COVID-19 pandemic. Only drugs that are already registered or close to registration, and therefore have passed lengthy safety assessments, have a chance to be tested in clinical trials and reach patients quickly enough to help in the current disease outbreak. Here, we have reviewed available evidence and possible ways forward to identify already existing pharmaceuticals displaying modest broad-spectrum antiviral activity which is likely linked to their high accumulation in cells. Several well studied examples indicate that these drugs accumulate in lysosomes, endosomes and biological membranes in general, and thereby interfere with endosomal pathway and intracellular membrane trafficking crucial for viral infection. With the aim to identify other lysosomotropic drugs with possible inherent antiviral activity, we have applied a set of clear physicochemical, pharmacokinetic and molecular criteria on 530 existing drugs. In addition to publicly available data, we have also used our in silico model for the prediction of accumulation in lysosomes and endosomes. By this approach we have identified 36 compounds with possible antiviral effects, also against coronaviruses. For 14 of them evidence of broad-spectrum antiviral activity has already been reported, adding support to the value of this approach. Presented pros and cons, knowledge gaps and methods to identify lysosomotropic antivirals, can help in the evaluation of many drugs currently in clinical trials considered for repurposing to target COVID-19, as well as open doors to finding more potent and safer alternatives.


Assuntos
Antivirais/uso terapêutico , Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Reposicionamento de Medicamentos , Lisossomos/efeitos dos fármacos , Pandemias , Pneumonia Viral/tratamento farmacológico , Anti-Inflamatórios/farmacocinética , Antivirais/efeitos adversos , Antivirais/farmacocinética , Arritmias Cardíacas/induzido quimicamente , Azitromicina/farmacocinética , Azitromicina/uso terapêutico , COVID-19 , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Cloroquina/farmacocinética , Cloroquina/uso terapêutico , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Endossomos/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Hidroxicloroquina/farmacocinética , Hidroxicloroquina/uso terapêutico , Membranas Intracelulares/fisiologia , Lisossomos/química , Lipídeos de Membrana/metabolismo , Modelos Biológicos , Fosfolipídeos/metabolismo , SARS-CoV-2 , Tensoativos/farmacocinética , Internalização do Vírus , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA