Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mutat ; 41(8): e7-e45, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32579787

RESUMO

The last decade has proven that amyotrophic lateral sclerosis (ALS) is clinically and genetically heterogeneous, and that the genetic component in sporadic cases might be stronger than expected. This study investigates 1,200 patients to revisit ALS in the ethnically heterogeneous yet inbred Turkish population. Familial ALS (fALS) accounts for 20% of our cases. The rates of consanguinity are 30% in fALS and 23% in sporadic ALS (sALS). Major ALS genes explained the disease cause in only 35% of fALS, as compared with ~70% in Europe and North America. Whole exome sequencing resulted in a discovery rate of 42% (53/127). Whole genome analyses in 623 sALS cases and 142 population controls, sequenced within Project MinE, revealed well-established fALS gene variants, solidifying the concept of incomplete penetrance in ALS. Genome-wide association studies (GWAS) with whole genome sequencing data did not indicate a new risk locus. Coupling GWAS with a coexpression network of disease-associated candidates, points to a significant enrichment for cell cycle- and division-related genes. Within this network, literature text-mining highlights DECR1, ATL1, HDAC2, GEMIN4, and HNRNPA3 as important genes. Finally, information on ALS-related gene variants in the Turkish cohort sequenced within Project MinE was compiled in the GeNDAL variant browser (www.gendal.org).


Assuntos
Esclerose Lateral Amiotrófica/genética , Bases de Dados Genéticas , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Internet , Fenótipo , Turquia , Sequenciamento Completo do Genoma
2.
Cell ; 180(3): 568-584.e23, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31981491

RESUMO

We present the largest exome sequencing study of autism spectrum disorder (ASD) to date (n = 35,584 total samples, 11,986 with ASD). Using an enhanced analytical framework to integrate de novo and case-control rare variation, we identify 102 risk genes at a false discovery rate of 0.1 or less. Of these genes, 49 show higher frequencies of disruptive de novo variants in individuals ascertained to have severe neurodevelopmental delay, whereas 53 show higher frequencies in individuals ascertained to have ASD; comparing ASD cases with mutations in these groups reveals phenotypic differences. Expressed early in brain development, most risk genes have roles in regulation of gene expression or neuronal communication (i.e., mutations effect neurodevelopmental and neurophysiological changes), and 13 fall within loci recurrently hit by copy number variants. In cells from the human cortex, expression of risk genes is enriched in excitatory and inhibitory neuronal lineages, consistent with multiple paths to an excitatory-inhibitory imbalance underlying ASD.


Assuntos
Transtorno Autístico/genética , Córtex Cerebral/crescimento & desenvolvimento , Sequenciamento do Exoma/métodos , Regulação da Expressão Gênica no Desenvolvimento , Neurobiologia/métodos , Estudos de Casos e Controles , Linhagem da Célula , Estudos de Coortes , Exoma , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Masculino , Mutação de Sentido Incorreto , Neurônios/metabolismo , Fenótipo , Fatores Sexuais , Análise de Célula Única/métodos
3.
Bioinformatics ; 35(18): 3433-3440, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30759247

RESUMO

MOTIVATION: Whole exome sequencing (WES) studies for autism spectrum disorder (ASD) could identify only around six dozen risk genes to date because the genetic architecture of the disorder is highly complex. To speed the gene discovery process up, a few network-based ASD gene discovery algorithms were proposed. Although these methods use static gene interaction networks, functional clustering of genes is bound to evolve during neurodevelopment and disruptions are likely to have a cascading effect on the future associations. Thus, approaches that disregard the dynamic nature of neurodevelopment are limited. RESULTS: Here, we present a spatio-temporal gene discovery algorithm, which leverages information from evolving gene co-expression networks of neurodevelopment. The algorithm solves a prize-collecting Steiner forest-based problem on co-expression networks, adapted to model neurodevelopment and transfer information from precursor neurodevelopmental windows. The decisions made by the algorithm can be traced back, adding interpretability to the results. We apply the algorithm on ASD WES data of 3871 samples and identify risk clusters using BrainSpan co-expression networks of early- and mid-fetal periods. On an independent dataset, we show that incorporation of the temporal dimension increases the predictive power: predicted clusters are hit more and show higher enrichment in ASD-related functions compared with the state-of-the-art. AVAILABILITY AND IMPLEMENTATION: The code is available at http://ciceklab.cs.bilkent.edu.tr/st-steiner. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Estudos de Associação Genética , Algoritmos , Transtorno do Espectro Autista , Análise por Conglomerados , Redes Reguladoras de Genes , Humanos , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA