Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 258(Pt 2): 129168, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171432

RESUMO

Tyrosinase is a key enzyme in enzymatic browning, causing quality losses in food through the oxidation process. Thus, the discovery of an effective and natural tyrosinase inhibitor via green technology is of great interest to the global food market due to food security and climate change issues. In this study, Syzygium aqueum (S. aqueum) leaves, which are known to be rich in phenolic compounds (PC), were chosen as a natural source of tyrosinase inhibitor, and the effect of the sustainable, supercritical fluid extraction (SFE) process was evaluated. Response surface methodology-assisted supercritical fluid extraction (RSM-assisted SFE) was utilized to optimize the PCs extracted from S. aqueum. The highest amount of PC was obtained at the optimum conditions (55 °C, 3350 psi, and 70 min). The IC50 (661.815 µg/mL) of the optimized extract was evaluated, and its antioxidant activity (96.8 %) was determined. Gas chromatography-mass spectrometry (GC-MS) results reveal that 2',6'-dihydroxy-4'-methoxychalcone (2,6-D4MC) (82.65 %) was the major PC in S. aqueum. Chemometric analysis indicated that 2,6-D4MC has similar chemical properties to the tyrosinase inhibitor control (kaempferol). The toxicity and physiochemical properties of the novel 2,6-D4MC from S. aqueum revealed that the 2,6-D4MC is safer than kaempferol as predicted via absorption, distribution, metabolism, and excretion (ADME) evaluation. Enzyme kinetic analysis shows that the type of inhibition of the optimized extract is non-competitive inhibition with Km = 1.55 mM and Vmax = 0.017 µM/s. High-performance liquid chromatography (HPLC) analysis shows the effectiveness of S. aqueum as a tyrosinase inhibitor. The mechanistic insight of the tyrosinase inhibition using 2,6-D4MC was successfully calculated using density functional theory (DFT) and molecular docking approaches. The findings could have a significant impact on food security development by devising a sustainable and effective tyrosinase inhibitor from waste by-products that is aligned with the United Nation's SDG 2, zero hunger.


Assuntos
Cromatografia com Fluido Supercrítico , Syzygium , Monofenol Mono-Oxigenase , Syzygium/química , Quimiometria , Quempferóis , Cromatografia com Fluido Supercrítico/métodos , Simulação de Acoplamento Molecular , Cinética , Extratos Vegetais/química
2.
Int J Biol Macromol ; 255: 128229, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981274

RESUMO

Enzymatic browning is of concern as it can affect food safety and quality. In this study, an effective and safe tyrosinase inhibitor and anti-browning agent, methyl 4-pyridyl ketone thiosemicarbazone (4-PT), was synthesised and characterised using Fourier-transform infrared (FTIR) spectroscopy, CHNS elemental analysis, and proton (1H) and carbon-13 (13C) nuclear magnetic resonance (NMR) spectroscopy. The vibrational frequencies of 4-PT were studied theoretically using vibrational energy distribution analysis (VEDA). Density functional theory (DFT) was applied to elucidate its chemical properties, including the Mulliken atomic charges, molecular electrostatic potential (MEP), quantum theory of atoms in molecules (QTAIM) and reduced density gradient non-covalent interactions (RDG-NCIs). Moreover, 4-PT was compared with kojic acid in terms of its effectiveness as a tyrosinase inhibitor and anti-browning agent. The toxicity and physicochemical properties of 4-PT were predicted via ADME evaluation, which proved that 4-PT is safer than kojic acid. Experimentally, 4-PT (IC50 = 5.82 µM, browning index (10 days) = 0.292 ± 0.002) was proven to be an effective tyrosinase inhibitor and anti-browning agent compared to kojic acid (IC50 = 128.17 µM, browning index (10 days) = 0.332 ± 0.002). Furthermore, kinetic analyses indicated that the type of tyrosinase inhibition is a mixed inhibition, with Km and Vmax values of 0.85 mM and 2.78 E-09 µM/s, respectively. Finally, the mechanism of 4-PT for tyrosinase inhibition was proven by 1D, second derivative and 2D IR spectroscopy, molecular docking and molecular dynamic simulation approaches.


Assuntos
Agaricales , Tiossemicarbazonas , Monofenol Mono-Oxigenase/química , Simulação de Acoplamento Molecular , Tiossemicarbazonas/farmacologia , Espectroscopia de Ressonância Magnética , Cetonas , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
3.
RSC Adv ; 12(43): 27793-27808, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36320253

RESUMO

Thiosemicarbazone-linked 3-acetylpyridine (T3AP), was synthesized and tested on copper strips in hydrochloric acid. Gravimetric measurements and electrochemical impedance spectroscopy were used to investigate the optimized inhibitory behavior of T3AP using the response surface methodology (RSM), with the optimized result obtained using a temperature of 42.90 °C, acid concentration of 2.38 M, inhibitor concentration of 3.80 mM, and time of 18.97 h, with inhibition efficiency up to approximately 93%. Validation of the experimental and predicted RSM showed that no significant difference in the inhibition efficiency with the confidence level value up to 97% was obtained. The isotherm study shows that T3AP obeys the Langmuir isotherm adsorption model, with physisorption and chemisorption adsorption mechanisms. The effectiveness of inhibitor performance of T3AP can be visually observed using scanning electron microscopy and X-ray photoelectron spectroscopy. The characterization revealed that the reactive S and N atoms in the T3AP inhibitor form strong chemical adsorption through N-Cu and Cu-S bonds on the copper surface. Computational analysis was also carried out, and we found that the stable energy gap between the occupied and unoccupied molecular orbitals (4.6891 eV) and high binding energy (540.962 kJ mol-1) adsorption from molecular dynamics were in agreement with the experimental findings.

4.
Sci Rep ; 11(1): 20963, 2021 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-34697346

RESUMO

Chemosensor using organic based compound offering superior alternative method in recognizing metal ion in environmental water. The optimization process strongly affected the performance of the designed sensor. In this study, a highly sensitive and selective colorimetric sensor system utilizing an organic compound, namely thiosemicarbazone-linked acetylpyrazine (TLA), to recognize Co2+ ions in different environmental water samples was successfully developed using the response surface methodology (RSM) approach. The developed model was optimized successfully and had statistically significant independent variables (p < 0.05), with optimum recognition occurring in 8:2 v/v DMSO/water at a pH of 5.3, a 100:70 µM TLA/Co2+ concentration, and 15 min of reaction time. Under optimum conditions, the TLA sensor recognized Co2+ ions at concentrations as low as 1.637 µM, which is lower than the detection limit of flame atomic absorption spectroscopy (FAAS). Theoretical approaches supported the experimental data as well as characterized and predicted the mechanistic non-covalent interactions of TLA-Co2+ within the chemosensing system. Finally, all the positive results produced in this study point to TLA as an alternative and comparable probe for recognizing Co2+ pollution in water that is cost effective, movable and easy-to-handle, requires no special training and ecofriendly.

5.
ACS Omega ; 6(39): 25179-25192, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34632177

RESUMO

The discharge of industrial effluents, such as phenol, into aquatic and soil environments is a global problem due to its serious negative impacts on human health and aquatic ecosystems. In this study, the ability of polyvinylpolypyrrolidone (PVPP) to remove phenol from an aqueous medium was investigated. The results showed that a significant proportion of phenol (up to 74.91%) was removed using PVPP at pH 6.5. Isotherm adsorption experiments of phenol on PVPP indicated that the best-fit adsorption was obtained using Langmuir models. The response peaks of the hydroxyl groups of phenol (OH) and the carboxyl groups (i.e., C=O) of PVPP were altered, indicating the formation of a hydrogen bond between the PVPP and phenol during phenol removal, as characterized using 1D and 2D IR spectroscopy. The resulting complexes were successfully characterized based on their thermodynamic properties, Mulliken charge, and electronic transition using the DFT approach. To clarify the types of interactions taking place in the complex systems, quantum theory of atoms in molecules (QTAIM) analysis, reduced density gradient noncovalent interaction (RDG-NCI) approach, and conductor-like screening model for real solvents (COSMO-RS) approach were also successfully calculated. The results showed that the interactions that occurred in the process of removing phenol by PVPP were through hydrogen bonding (based on RDG-NCI and COSMO-RS), which was identified as an intermediate type (∇2ρ(r) > 0 and H < 0, QTAIM). To gain a deeper understanding of how these interactions occurred, further characterization was performed based on adsorption mechanisms using molecular electrostatic potential, global reactivity, and local reactivity descriptors. The results showed that during hydrogen bond formation, PVPP acts as a nucleophile, whereas phenol acts as an electrophile and the O9 atom (i.e., donor electron) reacts with the H22 atom (i.e., acceptor electron).

6.
Sci Rep ; 10(1): 19573, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154550

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
J Food Sci Technol ; 57(8): 2852-2862, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32612298

RESUMO

ABSTRACT: Meat tenderness is the most important criterion in food quality because it strongly influences the consumer's satisfaction. Tenderness generally depends on connective tissue and sarcomere length of muscle. One of the effective methods for meat tenderizing is protease treatment. In this study, Manihot esculenta root was chosen as a protease source due to its skin blistering effect, suggesting the presence of strong proteolytic activity. The extraction of the crude protease was optimized by using response surface methodology (RSM) with four independent variables, which were pH (X1), CaCl2 (X2), Triton X-100 (X3) and 2-mercaptoethanol (X4). Based on the RSM model, all the independent variables were significant and the optimum extraction conditions were pH 9, 3.24 mM CaCl2, 4.12% Triton X-100 and 6.32 mM 2-mercaptoethanol. Tukey's test results showed that the difference between the expected and experimental protease activity value was 0.05%. A reduction of meat firmness was observed when samples treated with enzyme were compared with a control by using a texture analyser. Electrophoretic patterns also showed extensive proteolysis and a reduction of intensity and number of the protein bands in the treated sample. SEM clearly revealed the degradation of muscle fibres and connective tissue of meat treated with crude protease.

8.
Sci Rep ; 10(1): 9566, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32533034

RESUMO

Lipid oxidation and microbial contamination are the major factors contributing to food deterioration. Food additives like antioxidants and antibacterials can prevent food spoilage by delaying oxidation and preventing the growth of bacteria. Artocarpus altilis leaves exhibited biological properties that suggested its use as a new source of natural antioxidant and antimicrobial. Supercritical fluid extraction (SFE) was used to optimize the extraction of bioactive compounds from the leaves using response surface methodology (yield and antioxidant activity). The optimum SFE conditions were 50.5 °C temperature, 3784 psi pressure and 52 min extraction time. Verification test results (Tukey's test) showed that no significant difference between the expected and experimental DPPH activity and yield value (99%) were found. Gas-chromatography -mass spectrometry (GC-MS) analysis revealed three major bioactive compounds existed in A. altilis extract. The extract demonstrated antioxidant and antibacterial properties with 2,3-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity, ferric reducing ability of plasma (FRAP), hydroxyl radical scavenging activity, tyrosinase mushrrom inhibition of 41.5%, 8.15 ± 1.31 (µg of ascorbic acid equivalents), 32%, 37% and inhibition zone diameter of 0.766 ± 0.06 cm (B. cereus) and 1.27 ± 0.12 cm (E. coli). Conductor like screening model for real solvents (COSMO RS) was performed to explain the extraction mechanism of the major bioactive compounds during SFE. Molecular electrostatic potential (MEP) shows the probability site of nucleophilic and electrophilic attack during bacterial inhibition. Based on molecular docking study, non-covalent interactions are the main interaction occurring between the major bioactive compounds and bacteria (antibacterial inhibition).


Assuntos
Antibacterianos/farmacologia , Antioxidantes/farmacologia , Artocarpus/química , Extratos Vegetais/farmacologia , Antibacterianos/isolamento & purificação , Antioxidantes/isolamento & purificação , Bacillus cereus/efeitos dos fármacos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Escherichia coli/efeitos dos fármacos , Microbiologia de Alimentos , Sequestradores de Radicais Livres/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Peroxidação de Lipídeos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estrutura Molecular , Oxirredução , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Folhas de Planta/química , Solventes
9.
J Texture Stud ; 51(5): 810-829, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32401337

RESUMO

Meat tenderness is one of the most important organoleptic properties in determining consumer acceptance in meat product marketability. Therefore, an effective meat tenderization method is sought after by exploring plant-derived proteolytic enzymes as meat tenderizer. In this study, a novel protease from Cashew was identified as a new alternative halal meat tenderizer. The extraction of cashew protease was optimized using response surface methodology (R2 = 0.9803) by varying pH, CaCl2 concentration, mixing time, and mass. pH 6.34, 7.92 mM CaCl2 concentration, 5.51 min mixing time, and 19.24 g sample mass were the optimal extraction conditions. There was no significant difference (n = 3; p < 0.05) between the calculated (6.302 units/ml) and experimental (6.493 ± 0.229 units/ml) protease activity. The ascending order of the effects was pH < mixing time < CaCl2 < sample mass. In meat tenderizing application, the meat samples treated with 9% (v/w) crude protease extract obtained the lowest shear force (1.38 ± 0.25 N) to cause deformation on the meat. An electrophoretic analysis showed that protein bands above ~49.8 kDa were completely degraded into protein bands below ~22.4 kDa. Scanning electron microscopy shows the disruption of the muscle fibers after being treated by the Cashew protease. The results of this study show the Cashew (Anacardium occidentale) crude extract can be used as an alternative of the animal and microbial protease as meat tenderizer and subsequently overcome the shortcoming of the halal industrial protease.


Assuntos
Anacardium/embriologia , Frutas/enzimologia , Peptídeo Hidrolases/análise , Extratos Vegetais/análise , Combinação de Medicamentos , Estabilidade Enzimática , Manipulação de Alimentos , Concentração de Íons de Hidrogênio , Carne , Papaína , Análise de Regressão , Projetos de Pesquisa , Sódio na Dieta
10.
Acta Crystallogr Sect E Struct Rep Online ; 67(Pt 4): o943-4, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21754211

RESUMO

In the title compound, C(13)H(13)N(5)OS·H(2)O, the thio-urea mol-ecules closely resemble each other and are approximately planar; the dihedral angles formed between the terminal benzene rings are 7.88 (8) and 7.20 (8)°, respectively. The observed planarity correlates with the presence of bifurcated N-H⋯(O,N) hydrogen bonds. In the crystal, the mol-ecules are connected into supra-molecular double chains via a combination of N-H⋯S (linking the two independent mol-ecules), O-H⋯O and O-H⋯N (linking dimeric aggregates into a supra-molecular chain via hy-droxy-water, water-water and water-pyrazine inter-actions) and O-H⋯S hydrogen bonds (connecting two chains). The chains are further connected by C-H⋯N and C-H⋯S inter-actions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA