Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ther Deliv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38469701

RESUMO

Aim: This study explores chia oil, rich in ω-3 fatty acids and nutraceutical components, as a potential remedy for diseases, especially those linked to inflammation and cancer. Methods/materials: A chia oil-based nanoemulsion, developed through single emulsification, underwent comprehensive analysis using various techniques. In vitro and in vivo assays, including macrophage polarization, nitrite and cytokine production, cellular uptake and biodistribution, were conducted to assess the anti-inflammatory efficacy. Results & conclusion: Results reveal that the chia nanoemulsion significantly inhibits inflammation, outperforming pure oil with twice the efficacy. Enhanced uptake by macrophage-like cells and substantial accumulation in key organs indicate its potential as an economical and effective anti-inflammatory nanodrug, addressing global economic and health impacts of inflammation-related diseases.

2.
Curr Med Chem ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38265391

RESUMO

INTRODUCTION: Nanoceria is a well-known nanomaterial with various properties, including antioxidant, proangiogenic, and therapeutic effects. Despite its potential, there are still aspects that require further exploration, particularly its anti-inflammatory and antimicrobial activities. METHOD: The global demand for novel anti-inflammatory and antimicrobial drugs underscores the significance of understanding nanoceria in both contexts. In this study, we evaluated the effect of nanoceria on macrophage polarization to better understand its anti-inflammatory effects. Additionally, we investigated the mechanism of action of nanoceria against Cryptococcus neoformans (ATCC 32045), Candida parapsilosis (ATCC 22019), Candida krusei (ATCC 6258), and Candida albicans. RESULT: The results demonstrated that nanoceria can polarize macrophages toward an anti-inflammatory profile, revealing the cellular mechanisms involved in the anti-inflammatory response. Concerning the antimicrobial effect, it was observed that nanoceria have a more pronounced impact on Candida parapsilosis, leading to the formation of pronounced pores on the surface of this species. CONCLUSION: Finally, biochemical analysis revealed transitory alterations, mainly in liver enzymes. The data support the use of nanoceria as a potential anti-inflammatory and antimicrobial drug and elucidate some of the mechanisms involved, shedding light on the properties of this nanodrug.

3.
Chem Biodivers ; 21(2): e202301840, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38088493

RESUMO

Resistance to antimicrobial drugs has been considered a public health problem. Likewise, the increasing resistance of cancer cells to drugs currently used in therapy has also become a problem. Therefore, the research and development of synthetic peptides bring a new perspective on the emergence of new drugs for treating this resistance since bioinformatics provides a means to optimize these molecules and save time and costs in research. Peptides have several mechanisms of action, such as forming pores on the cell membrane and inhibiting protein synthesis. Some studies report the use of antimicrobial peptides with the potential for action against cancer cells, suggesting a repositioning of antimicrobial peptides to fight back cancer resistance. There is an alteration in the microenvironment, making its net charge negative for the survival and growth of cancer cells. The changes in glycoproteins favor the membrane to have a more negative charge, favoring the interaction between the cells and the peptide, thus making possible the repositioning of these antimicrobial peptides against cancer. Here, we will discuss the mechanism of action, targets and effects of peptides, comparison between microbial and cancer cells, and proteomic changes caused by the interaction of peptides and cells.


Assuntos
Anti-Infecciosos , Neoplasias , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Antimicrobianos , Reposicionamento de Medicamentos , Proteômica , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Neoplasias/tratamento farmacológico
4.
Future Virol ; 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37064326

RESUMO

Aim: This study aimed to analyze the phylogenetic relationships between the ACE2 of humans and other animals and investigate the potential interaction between SARS-CoV-2 RBD and ACE2 of different species. Materials & methods: The phylogenetic construction and molecular interactions were assessed using computational models. Results & conclusion: Despite the evolutionary distance, 11 species had a perfect fit for the interaction between their ACE2 and SARS-CoV-2 RBD (Chinchilla lanigera, Neovison vison, Rhinolophus sinicus, Emballonura alecto, Saccopteryx bilineata, Numida meleagris). Among them, the avian N. meleagris was reported for the first time in this study as a probable SARS-CoV-2 host due to the strong molecular interactions. Therefore, predicting potential hosts for SARS-CoV-2 for understanding the epidemiological cycle and proposal of surveillance strategies.


Here, computational analysis was employed to predict the interaction between the Spike protein from SARS-COV-2 with the ACE2 receptor with animals that could serve as a reservoir for SARS-CoV-2 spillover. Our results reported for the first time that N. meleagris could act as a possible host for SARS-CoV-2.

5.
J Plant Physiol ; 245: 153110, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31918353

RESUMO

Infection with Cowpea severe mosaic virus (CPSMV) represents one of the main limitations for cowpea (Vigna unguiculata L. Walp.) productivity due to the severity of the disease symptoms, frequency of incidence, and difficulties in dissemination control. This study aimed to identify the proteins and metabolic pathways associated with the susceptibility and resistance of cowpea plants to CPSMV. Therefore, we treated the seeds of a naturally susceptible cowpea genotype (CE-31) with the mutagenic agent ethyl methane sulfonate (EMS) and compared the secondary leaf proteomic profile of the mutagenized resistant plants inoculated with CPSMV (MCPI plant group) to those of the naturally susceptible cowpea genotype CE-31 inoculated (CPI) and noninoculated (CPU) with CPSMV. MCPI responded to CPSMV by accumulating proteins involved in the oxidative burst, increasing H2O2 generation, promoting leaf cell death (LCD), increasing the synthesis of defense proteins, and decreasing host factors important for the establishment of CPSMV infection. In contrast, CPI accumulated several host factors that favor CPSMV infection and did not accumulate H2O2 or present LCD, which allowed CPSMV replication and systemic dissemination. Based on these results, we propose that the differential abundance of defense proteins and proteins involved in the oxidative burst, LCD, and the decrease in cowpea protein factors required for CPSMV replication are associated with the resistance trait acquired by the MCPI plant group.


Assuntos
Comovirus/fisiologia , Resistência à Doença , Peróxido de Hidrogênio/metabolismo , Mutagênese , Folhas de Planta/virologia , Vigna/metabolismo , Vigna/virologia , Morte Celular/genética , Morte Celular/fisiologia , Resistência à Doença/genética , Resistência à Doença/fisiologia , Metanossulfonato de Etila/química , Metanossulfonato de Etila/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Ontologia Genética , Homeostase/efeitos dos fármacos , Homeostase/genética , Homeostase/fisiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/fisiologia , Mutagênicos/química , Mutagênicos/farmacologia , Oxirredução/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Fotossíntese/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/efeitos dos fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Mapas de Interação de Proteínas , Proteoma/efeitos dos fármacos , Proteoma/genética , Proteoma/metabolismo , Proteoma/fisiologia , Vigna/genética , Vigna/fisiologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA