Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Prog ; 33(6): 1436-1448, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28547769

RESUMO

Generating purified protein for GLP toxicology studies (GLP-Tox) represents an important and often rate limiting step in the biopharmaceutical drug development process. Toxicity testing requires large amounts of therapeutic protein (>100 g), typically produced in a single 500-2,500 L bioreactor, using the final CHO clonally derived cell line (CDCL). One approach currently used to save time is to manufacture GLP-Tox material using pools of high-producing CHO CDCLs instead of waiting for the final CDCL. Recently, we reported CHO pools producing mAb titers >7 g/L using piggyBac-mediated gene integration (PB CHO pools). In this study, we wanted to leverage high titer PB CHO pools to produce GLP-Tox material. A detailed product quality attribute (PQA) assessment was conducted comparing PB CHO pools to pooled Top4 CDCLs. Four mAbs were evaluated. First, we found that PB CHO pools expressed all four mAbs at high titers (2.8-4.4 g/L in shake flasks). Second, all four PB CHO pools were aged to 55 generations (Gen). All four PB CHO Pools were found to be suitable over 55 Gen. Finally, we performed bioreactor scale-up. PB CHO pool titers (3.7-4.8 g/L) were similar or higher than the pooled Top 4 CDCLs in 5 L bioreactors (2.4-4.1 g/L). The PQAs of protein derived from PB CHO pools were very similar to pooled Top 4 CHO CDCLs according to multiple orthogonal techniques including peptide mapping analysis. Taken together, these results demonstrate the technical feasibility of using PB CHO pools to manufacture protein for GLP-Tox. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1436-1448, 2017.


Assuntos
Anticorpos Monoclonais/genética , Reatores Biológicos , Células CHO/efeitos dos fármacos , Proteínas Recombinantes/genética , Animais , Anticorpos Monoclonais/farmacologia , Células CHO/metabolismo , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Humanos , Proteínas Recombinantes/efeitos adversos , Proteínas Recombinantes/isolamento & purificação
2.
Biotechnol Prog ; 33(2): 534-540, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28188692

RESUMO

Chinese hamster ovary (CHO) cells remain the most popular host for the production of biopharmaceutical drugs, particularly monoclonal antibodies (mAbs), bispecific antibodies, and Fc-fusion proteins. Creating and characterizing the stable CHO clonally-derived cell lines (CDCLs) needed to manufacture these therapeutic proteins is a lengthy and laborious process. Therefore, CHO pools have increasingly been used to rapidly produce protein to support and enable preclinical drug development. We recently described the generation of CHO pools yielding mAb titers as high as 7.6 g/L in a 16 day bioprocess using piggyBac transposon-mediated gene integration. In this study, we wanted to understand why the piggyBac pool titers were significantly higher (2-10 fold) than the control CHO pools. Higher titers were the result of a combination of increased average gene copy number, significantly higher messenger RNA levels and the homogeneity (i.e. less diverse population distribution) of the piggyBac pools, relative to the control pools. In order to validate the use of piggyBac pools to support preclinical drug development, we then performed an in-depth product quality analysis of purified protein. The product quality of protein obtained from the piggyBac pools was very similar to the product quality profile of protein obtained from the control pools. Finally, we demonstrated the scalability of these pools from shake flasks to 36L bioreactors. Overall, these results suggest that gram quantities of therapeutic protein can be rapidly obtained from piggyBac CHO pools without significantly changing product quality attributes. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:534-540, 2017.


Assuntos
Anticorpos Monoclonais/biossíntese , Reatores Biológicos , Proliferação de Células/fisiologia , Elementos de DNA Transponíveis/genética , Engenharia de Proteínas/métodos , Animais , Anticorpos Monoclonais/genética , Técnicas de Cultura Celular por Lotes/métodos , Células CHO , Cricetulus , Projetos Piloto , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA