Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Geophys Res Lett ; 47(13): e2020GL088039, 2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32728303

RESUMO

In the California Current Ecosystem, krill represent a key link between primary production and higher trophic level species owing to their central position in the food web and tendency to form dense aggregations. However, the strongly advective circulation associated with coastal upwelling may decouple the timing, occurrence, and persistence of krill hotspots from phytoplankton biomass and nutrient sources. Results from a coupled physical-biological model provide insights into fundamental mechanisms controlling the phenology of krill hotspots in the California Current Ecosystem, and their sensitivity to alongshore changes in coastal upwelling intensity. The simulation indicates that dynamics controlling krill hotspot formation, intensity, and persistence on seasonal and interannual timescales are strongly heterogeneous and related to alongshore variations in upwelling-favorable winds, primary production, and ocean currents. Furthermore, regions promoting persistent krill hotspot formation coincide with increased observed abundance of top predators, indicating that the model resolves important ecosystem complexity and function.

2.
PLoS One ; 14(3): e0214403, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30917190

RESUMO

Greatly enhanced atmospheric carbon dioxide (CO2) levels relative to well-mixed marine air are observed during periods of offshore winds at coastal sensor platforms in Monterey Bay, California, USA. The highest concentrations originate from urban and agricultural areas, are driven by diurnal winds, and peak in the early morning. These enhanced atmospheric levels can be detected across a ~100km wide nearshore area and represent a significant addition to total oceanic CO2 uptake. A global estimate puts the added sea-air flux of CO2 from these greatly enhanced atmospheric CO2 levels at 25 million tonnes, roughly 1% of the ocean's annual CO2 uptake. The increased uptake over the 100 km coastal swath is of order 20%, indicating a potentially large impact on ocean acidification in productive coastal waters.


Assuntos
Ar/análise , Dióxido de Carbono/análise , Água do Mar/análise , California , Oceanos e Mares , Reforma Urbana , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA