Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Adv Sci (Weinh) ; : e2401070, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526150

RESUMO

Herein, a robust microporous aluminum tetracarboxylate framework, MIL-120(Al)-AP, (MIL, AP: Institute Lavoisier and Ambient Pressure synthesis, respectively) is reported, which exhibits high CO2 uptake (1.9 mmol g-1 at 0.1 bar, 298 K). In situ Synchrotron X-ray diffraction measurements together with Monte Carlo simulations reveal that this structure offers a favorable CO2 capture configuration with the pores being decorated with a high density of µ2-OH groups and accessible aromatic rings. Meanwhile, based on calculations and experimental evidence, moderate host-guest interactions Qst (CO2) value of MIL-120(Al)-AP (-40 kJ mol-1) is deduced, suggesting a relatively low energy penalty for full regeneration. Moreover, an environmentally friendly ambient pressure green route, relying on inexpensive raw materials, is developed to prepare MIL-120(Al)-AP at the kilogram scale with a high yield while the Metal- Organic Framework (MOF) is further shaped with inorganic binders as millimeter-sized mechanically stable beads. First evidences of its efficient CO2/N2 separation ability are validated by breakthrough experiments while operando IR experiments indicate a kinetically favorable CO2 adsorption over water. Finally, a techno-economic analysis gives an estimated production cost of ≈ 13 $ kg-1, significantly lower than for other benchmark MOFs. These advancements make MIL-120(Al)-AP an excellent candidate as an adsorbent for industrial-scale CO2 capture processes.

2.
Adv Mater ; 36(12): e2211302, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36897806

RESUMO

The development of thermally driven water-sorption-based technologies relies on high-performing water vapor adsorbents. Here, polymorphism in Al-metal-organic frameworks is disclosed as a new strategy to tune the hydrophilicity of MOFs. This involves the formation of MOFs built from chains of either trans- or cis- µ-OH-connected corner-sharing AlO4(OH)2 octahedra. Specifically, [Al(OH)(muc)] or MIP-211, is made of trans, trans-muconate linkers, and cis-µ-OH-connected corner-sharing AlO4(OH)2 octahedra giving a 3D network with sinusoidal channels. The polymorph MIL-53-muc has a tiny change in the chain structure that results in a shift of the step position of the water isotherm from P/P0 ≈ 0.5 in MIL-53-muc, to P/P0 ≈ 0.3 in MIP-211. Solid-state NMR and Grand Canonical Monte Carlo reveal that the adsorption occurs initially between two hydroxyl groups of the chains, favored by the cis-positioning in MIP-211, resulting in a more hydrophilic behavior. Finally, theoretical evaluations show that MIP-211 would allow achieving a coefficient of performance for cooling (COPc) of 0.63 with an ultralow driving temperature of 60 °C, outperforming benchmark sorbents for small temperature lifts. Combined with its high stability, easy regeneration, huge water uptake capacity, green synthesis, MIP-211 is among the best adsorbents for adsorption-driven air conditioning and water harvesting from the air.

3.
Small Methods ; 8(3): e2301343, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38032133

RESUMO

Owing to their high porosity and tunability, porous solids such as metal-organic frameworks (MOFs), zeolites, or activated carbons (ACs) are of great interest in the fields of air purification, gas separation, and catalysis, among others. Nonetheless, these materials are usually synthetized as powders and need to be shaped in a more practical way that does not modify their intrinsic property (i.e., porosity). Elaborating porous, freestanding and flexible sheets is a relevant shaping strategy. However, when high loadings (>70 wt.%) are achieved the mechanical properties are challenged. A new straightforward and green method involving the combination softwood bleached kraft pulp fibers (S) and nano-fibrillated cellulose (NFC) is reported, where S provides flexibility while NFC acts as a micro-structuring and mechanical reinforcement agent to form high loadings porous solids paper sheets (>70 wt.%). The composite has unobstructed porosity and good mechanical strength. The sheets prepared with various fillers (MOFs, ACs, and zeolites) can be rolled, handled, and adapted to different uses, such as air purification. As an example of potential application, a MOF paper composite has been considered for the capture of polar volatile organic compounds exhibiting better performance than beads and granules.

4.
Phys Chem Chem Phys ; 25(17): 12057-12064, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37092645

RESUMO

Recent breakthrough experiments revealed the iso-reticular Zr-MOFs, MIL-140B and MIL-140C, as promising sorbents for the separation of C6 isomers. Interestingly while the ultra-small pore MIL-140B exhibited hexane isomer sorption hierarchy according to the normal boiling point order (n-C6 > 3MP (3-methyl pentane)), an uncommon shift in the elution order was observed in the larger pore MIL-140C. It was only speculated that the flexibility of the MOFs might be the origin of this intriguing behavior. Herein, flexible force field hybrid osmotic Monte Carlo combined with molecular dynamics simulations were carried out to unravel the microscopic mechanism of the adsorption and dynamics of both C6 isomers in MIL140B and MIL140C. Thermodynamically preferred adsorption of n-C6 over 3MP was predicted for MIL-140B and to a slightly less extent for MIL-140C. Interestingly while the mobility of n-C6 was found to remain higher than that of 3MP in the whole range of loading for MIL-140B, 3MP becomes more mobile than n-C6 at saturation in MIL-140C. This suggests that this kinetics order is most probably the origin of the inversion of the elution order observed experimentally for MIL-140C. The translational and rotational dynamics of the two guests in MIL-140B and MIL-140C was further understood in-depth.

5.
J Mater Chem B ; 11(14): 3195-3211, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951043

RESUMO

Among a plethora of drug nanocarriers, biocompatible nanoscale metal-organic frameworks (nanoMOFs) with a large surface area and an amphiphilic internal microenvironment have emerged as promising drug delivery platforms, mainly for cancer therapy. However, their application in biomedicine still suffers from shortcomings such as a limited chemical and/or colloidal stability and/or toxicity. Here, we report the design of a hierarchically porous nano-object (denoted as USPIO@MIL) combining a benchmark nanoMOF (that is, MIL-100(Fe)) and ultra-small superparamagnetic iron oxide (USPIO) nanoparticles (that is, maghemite) that is synthesized through a one-pot, cost-effective and environmentally friendly protocol. The synergistic coupling of the physico-chemical and functional properties of both nanoparticles confers to these nano-objects valuable features such as high colloidal stability, high biodegradability, low toxicity, high drug loading capacity as well as stimuli-responsive drug release and superparamagnetic properties. This bimodal MIL-100(Fe)/maghemite nanocarrier once loaded with anti-tumoral and anti-inflammatory drugs (doxorubicin and methotrexate) shows high anti-inflammatory and anti-tumoral activities. In addition, the USPIO@MIL nano-object exhibits excellent relaxometric properties and its applicability as an efficient contrast agent for magnetic resonance imaging is herein demonstrated. This highlights the high potential of the maghemite@MOF composite integrating the functions of imaging and therapy as a theranostic anti-inflammatory formulation.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Nanomedicina , Anti-Inflamatórios/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro
6.
Angew Chem Int Ed Engl ; 62(6): e202211583, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36468308

RESUMO

Metal-Organic Frameworks (MOFs) with open metal sites (OMS) interact strongly with a range of polar gases/vapors. However, under ambient conditions, their selective adsorption is generally impaired due to a high OMS affinity to water. This led previously to the privilege selection of hydrophobic MOFs for the selective capture/detection of volatile organic compounds (VOCs). Herein, we show that this paradigm is challenged by metal(III) polycarboxylates MOFs, bearing a high concentration of OMS, as MIL-100(Fe), enabling the selective capture of polar VOCs even in the presence of water. With experimental and computational tools, including single-component gravimetric and dynamic mixture adsorption measurements, in situ infrared (IR) spectroscopy and Density Functional Theory calculations we reveal that this adsorption mechanism involves a direct coordination of the VOC on the OMS, associated with an interaction energy that exceeds that of water. Hence, MOFs with OMS are demonstrated to be of interest for air purification purposes.

7.
Adv Sci (Weinh) ; 9(22): e2201494, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35666071

RESUMO

Zeolites and metal-organic frameworks (MOFs) are considered as "competitors" for new separation processes. The production of high-quality gasoline is currently achieved through the total isomerization process that separates pentane and hexane isomers while not reaching the ultimate goal of a research octane number (RON) higher than 92. This work demonstrates how a synergistic action of the zeolite 5A and the MIL-160(Al) MOF leads to a novel adsorptive process for octane upgrading of gasoline through an efficient separation of isomers. This innovative mixed-bed adsorbent strategy encompasses a thermodynamically driven separation of hexane isomers according to the degree of branching by MIL-160(Al) coupled to a steric rejection of linear isomers by the molecular sieve zeolite 5A. Their adsorptive separation ability is further evaluated under real conditions by sorption breakthrough and continuous cyclic experiments with a mixed bed of shaped adsorbents. Remarkably, at the industrially relevant temperature of 423 K, an ideal sorption hierarchy of low RON over high RON alkanes is achieved, i.e., n-hexane ≫ n-pentane ≫ 2-methylpentane > 3-methylpentane ⋙ 2,3-dimethylbutane > isopentane ≈ 2,2-dimethylbutane, together with a productivity of 1.14 mol dm-3 and a high RON of 92, which is a leap-forward compared with existing processes.

8.
Faraday Discuss ; 231(0): 326-341, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34254064

RESUMO

The potential of safe and low-cost batch production processes for Metal-Organic Frameworks (MOFs) at an industrial scale has been evaluated based on the prototypical MOF MIL-160(Al), a bio-derived material of high practical interest that can be made with a high space-time yield using green ambient pressure conditions. A simple method to calculate the production cost of this material has been determined based on a simulated process constructed with the data collected from laboratory pilot large-scale tests taking into account for the first time in MOF cost evaluation all the process parameters such as the scale, the cost of the raw materials, recirculation, and washing. The investment for a production plant established the ground for the estimation of the complete cost. The expected cost ranged from ca. 55 $ per kg at 100 tons per year down to 29.5 $ per kg for 1 kton per year production with longer term perspectives of reaching costs below 10 $ per kg once the bio-derived ligand is considered for the large-scale production of bioplastics.


Assuntos
Estruturas Metalorgânicas , Desenvolvimento Industrial
9.
Angew Chem Int Ed Engl ; 60(8): 4282-4288, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33179846

RESUMO

Room-temperature syntheses of metal-organic frameworks (MOFs) are of interest to meet the demand of the sustainable chemistry and are a pre-requisite for the incorporation of functional compounds in water-stable MOFs. However, only few routes under ambient conditions have been reported to produce metal(IV)-based MOFs. Reported here is a new versatile one-step synthesis of a series of highly porous M6 -oxocluster-based MOFs (M=Zr, Hf, Ce) at room temperature, including 8- or 12-connected micro/mesoporous solids with different functionalized organic ligands. The compounds show varying degrees of defects, particularly for 12-connected phases, while maintaining the chemical stability of the parent MOFs. Proposed here are first insights into in situ kinetics observations for efficient MOF preparation. Remarkably, the synthesis has a high space-time yield and also provides the possibility to tune the particle size, therefore paving the way for their practical use.

10.
ACS Appl Mater Interfaces ; 11(30): 27410-27421, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31262167

RESUMO

A series of zirconium dicarboxylate-based metal-organic frameworks (Zr MOFs) of the UiO-66 (tetrahedral and octahedral cages) or MIL-140 (triangular channels) structure type were investigated for the separation of ethane/ethylene mixtures. The adsorption, investigated both experimentally and computationally, revealed that the size and type of pores have a more pronounced effect on the selectivity than the aromaticity of the linker. The increase in pore size when changing from benzene to naphthalene (NDC) dicarboxylate ligand makes UiO-NDC less selective (1.3-1.4) than UiO-66 (1.75-1.9) within the pressure range (100-1000 kPa), while the three-dimensional (3D) pores of the UiOs favor the adsorption of ethane due to the interactions between ethane with more spacers than in the case of the 1D channels of MIL-140s. The impact of the functionalization revealed a very interesting increase of selectivity when two perfluoro groups are present on the aromatic ring (UiO-66-2CF3) (value of 2.5 up to 1000 kPa). Indeed, UiO-66-2CF3 revealed a unique combination of selectivity and working capacity at high pressures. This is due to a complex adsorption mechanism involving a different distribution of the guest molecules in the different cages associated with changes in the ligand/perfluoro orientation when the pressure increases, favoring the ethane adsorption at high pressures.

11.
Sci Rep ; 8(1): 15284, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30327543

RESUMO

Latent cooling load accounts for 30% of the total load of air-conditioning, and its proportion is even higher in many tropical and subtropical climates. Traditional vapour-compression air-conditioning (VCAC) has a low coefficient of performance (COP) due to the refrigeration dehumidification process, which often makes necessary a great deal of subsequent re-heating. Technologies using conventional desiccants or sorbents for indoor moisture control are even less competitive than VCAC due to their high regeneration temperature, long cycling time and bulky components. Here, we report a novel high temperature cooling system that uses porous metal-organic frameworks (MOFs) as advanced sorbents for humidity control. We directly coat MOFs on the surface of evaporator and condenser. The system has no additional components compared to a traditional VCAC. The evaporator can simultaneously remove both the sensible and latent loads of the incoming air without reducing the temperature below its dew point. The regeneration of wet MOFs is completely driven by the residual heat from the condenser. The MOF-coated heat exchangers can achieve a cooling power density of 82 W·L-1. We demonstrate that the system has a high COP, up to 7.9, and can save 36.1% of the energy required, compared to the traditional VCAC system with reheating. The amphiphilic MOFs used in the research have high water uptake, are made of low-cost raw materials and have high hydrothermal stability. They thus have the potential for being scaled up for large-scale applications in air conditioning.

12.
Nat Commun ; 9(1): 1660, 2018 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-29695794

RESUMO

Porous titanium oxide materials are attractive for energy-related applications. However, many suffer from poor stability and crystallinity. Here we present a robust nanoporous metal-organic framework (MOF), comprising a Ti12O15 oxocluster and a tetracarboxylate ligand, achieved through a scalable synthesis. This material undergoes an unusual irreversible thermally induced phase transformation that generates a highly crystalline porous product with an infinite inorganic moiety of a very high condensation degree. Preliminary photophysical experiments indicate that the product after phase transformation exhibits photoconductive behavior, highlighting the impact of inorganic unit dimensionality on the alteration of physical properties. Introduction of a conductive polymer into its pores leads to a significant increase of the charge separation lifetime under irradiation. Additionally, the inorganic unit of this Ti-MOF can be easily modified via doping with other metal elements. The combined advantages of this compound make it a promising functional scaffold for practical applications.

13.
ACS Appl Mater Interfaces ; 10(16): 13886-13894, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29613759

RESUMO

The removal of low concentrations of acetic acid from indoor air at museums poses serious preservation problems that the current adsorbents cannot easily address owing to their poor affinity for acetic acid and/or their low adsorption selectivity versus water. In this context, a series of topical water-stable metal-organic frameworks (MOFs) with different pore sizes, topologies, hydrophobic characters, and functional groups was explored through a joint experimental-computational exploration. We demonstrate how a subtle combination of sufficient hydrophobicity and optimized host-guest interactions allows one to overcome the challenge of capturing traces of this very polar volatile organic compound in the presence of humidity. The optimal capture of acetic acid was accomplished with MOFs that do not show polar groups in the inorganic node or have lipophilic but polar (e.g., perfluoro) groups functionalized to the organic linkers, that is, the best candidates from the list of explored MOFs are MIL-140B and UiO-66-2CF3. These two MOFs present the appropriate pore size to favor a high degree of confinement, together with organic spacers that allow an enhancement of the van der Waals interactions with the acetic acid. We establish in this work that MOFs can be a viable solution to this highly challenging problem in cultural heritage protection, which is a new field of application for this type of hybrid materials.

14.
Chemistry ; 23(70): 17714-17720, 2017 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-28869689

RESUMO

Materials science of metal open frameworks is a state-of-the-art field for numerous applications, such as gas storage, sensors, and medicine. Two nanoporous frameworks, γ-Mg(BH4 )2 and MIL-91(Ti), with different levels of structural flexibility, were examined with in situ X-ray diffraction guest adsorption-desorption experiments. Both frameworks exhibit a cooperative guest adsorption correlated with a lattice deformation. This cooperativity originates from the long-range interactions between guest molecules, mediated by elastic response of the host porous structure. The observed experimental scenarios are rationalized with a mean field Gorsky-Bragg-Williams (GBW) approach for the lattice-gas Ising model. The adjusted GBW model, in combination with in situ synchrotron powder diffraction, demonstrates an efficient experimental and phenomenological approach to characterize thermodynamics of the adsorption in MOFs not only for the total uptake but also for every specific guest site.

15.
Chemphyschem ; 18(19): 2739-2746, 2017 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-28691276

RESUMO

The diffusivity of CO2 and N2 in the small-pore titanium-based bis(phosphonate) metal-organic framework MIL-91(Ti) was explored by using a combination of quasielastic neutron scattering measurements and molecular dynamics simulations. These two techniques were used to determine the loading dependence of the self-diffusivity, corrected and transport diffusivities of these two gases to complement our previously reported thermodynamics study, which revealed that this material was a promising candidate for CO2 /N2 separation. The calculated and measured diffusivities of both gases were shown to be of an order of magnitude sufficiently high, from 10-9 to 10-10  m2 s-1 , and N2 diffused faster than CO2 through the small channel of MIL-91(Ti). Consequently, the separation process does not involve any kinetic-driven limitations. This study further revealed that the global diffusion mechanism involves motions of gases along the channels by a jump sequence, and the residence times for CO2 in the region close to the specific PO⋅⋅⋅H⋅⋅⋅N zwitterionic sites are much higher than those for N2 , which explains the faster diffusivity observed for N2 .

16.
ChemSusChem ; 10(7): 1419-1426, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28160428

RESUMO

The energy-storage capacities of a series of water-stable porous metal-organic frameworks, based on high-valence metal cations (Al3+ , Fe3+ , Cr3+ , Ti4+ , Zr4+ ) and polycarboxylate linkers, were evaluated under the typical conditions of seasonal energy-storage devices. The results showed that the microporous hydrophilic Al-dicarboxylate MIL-160(Al) exhibited one of the best performances. To assess the properties of this material for space-heating applications on a laboratory pilot scale with an open reactor, a new synthetic route involving safer, greener conditions was developed. This led to the production of MIL-160(Al) on a 400 g scale, before the material was shaped into pellets through a wet-granulation method. The material exhibited a very high energy-storage capacity for a physical-sorption material (343 Wh kg-1 ), which is in full agreement with the predicted value.


Assuntos
Alumínio/química , Temperatura Alta , Interações Hidrofóbicas e Hidrofílicas , Compostos Organometálicos/química , Compostos Organometálicos/síntese química , Técnicas de Química Sintética , Modelos Moleculares , Conformação Molecular
17.
Angew Chem Int Ed Engl ; 55(12): 3919-24, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26889765

RESUMO

The water stable UiO-66(Zr)-(CO2H)2 MOF exhibits a superprotonic conductivity of 2.3×10(-3)  S cm(-1) at 90 °C and 95 % relative humidity. Quasi-elastic neutron scattering measurements combined with aMS-EVB3 molecular dynamics simulations were able to probe individually the dynamics of both confined protons and water molecules and to further reveal that the proton transport is assisted by the formation of a hydrogen-bonded water network that spans from the tetrahedral to the octahedral cages of this MOF. This is the first joint experimental/modeling study that unambiguously elucidates the proton-conduction mechanism at the molecular level in a highly conductive MOF.

18.
Chem Commun (Camb) ; 51(77): 14458-61, 2015 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-26278204

RESUMO

Crystallisation of a mixed-metal form of the porous framework UiO-66 in which Zr is partially replaced by Ce produces a ligand-defective material, that contains some Ce(III) as well as a majority of Ce(IV). Infrared spectroscopy shows enhanced binding of methanol in the substituted material that leads to catalytic decomposition of the alcohol, which may be due to a combination of defects and redox activity.

19.
Angew Chem Int Ed Engl ; 54(12): 3664-8, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25655768

RESUMO

The synthesis of the commercially available aluminum fumarate sample A520 has been optimized and its structure analyzed through a combination of powder diffraction, solid-state NMR spectroscopy, molecular simulation, IR spectroscopy, and thermal analysis. A520 is an analogue of the MIL-53(Al)-BDC solid, but with a more rigid behavior. The differences between the commercial and the optimized samples in terms of defects have been investigated by in situ IR spectroscopy and correlated to their catalytic activity for ethanol dehydration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA