Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Food Res Int ; 190: 114605, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945573

RESUMO

Some amino acids are known to mediate immune responses through gut microbiota metabolism in both humans and monogastric animals. However, through the diet, most free amino acids are absorbed in the small intestine and only a small quantity reaches the microbiota-rich colon. To enhance microbial metabolism of amino acids and their potential health benefits, encapsulation strategies are developed for their protection and delivery to the colon. So far, the main encapsulation systems for amino acids are based on solid lipid particles, but their fate within the digestive tract has never been fully clarified. In this study, we investigated the release of various amino acids (branched-chain amino acid mixture, or lysine, or tryptophan) loaded in solid lipid particles during in vitro oro-gastrointestinal digestion mimicking the piglet. The loaded solid lipid particles were fully characterized for their composition, thermal behavior, molecular structure, crystalline state, surface morphology, and particle size distribution. Moreover, we investigated the effect of particle size by sieving solid lipid particles into two non-overlapping size fractions. We found that amino acid release was high during the gastric phase of digestion, mainly controlled by physical parameters, namely particle size and crystalline state including surface morphology. Large particle size and/or smooth ordered particle indeed led to slower and lower release. Although lipid hydrolysis was significant during the intestinal phase of digestion, the impact of the crystalline state and surface morphology was also observed in the absence of enzymes, pointing to a dominant water/solute diffusion mechanism through these porous solid lipid particles.


Assuntos
Aminoácidos , Digestão , Lipídeos , Tamanho da Partícula , Lipídeos/química , Aminoácidos/metabolismo , Aminoácidos/química , Animais , Lisina/metabolismo , Lisina/química , Suínos , Trato Gastrointestinal/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Triptofano/metabolismo , Triptofano/química
2.
J Colloid Interface Sci ; 668: 252-263, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38678881

RESUMO

Protein body (PB) formation in wheat seeds is a critical process influencing seed content and nutritional quality. In this study, we investigate the potential mechanisms governing PB formation through an in vitro approach, focusing on γ-gliadin, a key wheat storage protein. We used a microfluidic technique to encapsulate γ-gliadin within giant unilamellar vesicles (GUVs) and tune the physicochemical conditions in a controlled and rapid way. We examined the influence of pH and protein concentration on LLPS and protein-membrane interactions using various microscopy and spectroscopy techniques. We showed that γ-gliadin encapsulated in GUVs can undergo a pH-triggered liquid-liquid phase separation (LLPS) by two distinct mechanisms depending on the γ-gliadin concentration. At low protein concentrations, γ-gliadins phase separate by a nucleation and growth-like process, while, at higher protein concentration and pH above 6.0, γ-gliadin formed a bi-continuous phase suggesting a spinodal decomposition-like mechanism. Fluorescence and microscopy data suggested that γ-gliadin dense phase exhibited affinity for the GUV membrane, forming a layer at the interface and affecting the reversibility of the phase separation.


Assuntos
Gliadina , Triticum , Lipossomas Unilamelares , Gliadina/química , Gliadina/isolamento & purificação , Triticum/química , Concentração de Íons de Hidrogênio , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Água/química , Lipídeos de Membrana/química , Separação de Fases
3.
Int J Biol Macromol ; 266(Pt 1): 130823, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492703

RESUMO

Preclinical data acquired for human muscle stem (hMuStem) cells indicate their great repair capacity in the context of muscle injury. However, their clinical potential is limited by their moderate ability to survive after transplantation. To overcome these limitations, their encapsulation within protective environment would be beneficial. In this study, tunable calcium-alginate hydrogels obtained through molding method using external or internal gelation were investigated as a new strategy for hMuStem cell encapsulation. The mechanical properties of these hydrogels were characterized in their fully hydrated state by compression experiments using Atomic Force Microscopy. Measured elastic moduli strongly depended on the gelation mode and calcium/alginate concentrations. Values ranged from 1 to 12.5 kPa and 3.9 to 25 kPa were obtained for hydrogels prepared following internal and external gelation, respectively. Also, differences in mechanical properties of hydrogels resulted from their internal organization, with an isotropic structure for internal gelation, while external mode led to anisotropic one. It was further shown that viability, morphological and myogenic differentiation characteristics of hMuStem cells incorporated within alginate hydrogels were preserved after their release. These results highlight that hMuStem cells encapsulated in calcium-alginate hydrogels maintain their functionality, thus allowing to develop muscle regeneration protocols to improve their therapeutic efficacy.


Assuntos
Alginatos , Diferenciação Celular , Hidrogéis , Células-Tronco , Estresse Mecânico , Alginatos/química , Humanos , Hidrogéis/química , Células-Tronco/citologia , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Módulo de Elasticidade , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA