Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Environ Sci Technol ; 58(18): 8076-8085, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38661729

RESUMO

Per- and polyfluoroalkyl substances (PFAS) have received increased attention due to their environmental prevalence and threat to public health. Trifluoroacetic acid (TFA) is an ultrashort-chain PFAS and the simplest perfluorocarboxylic acid (PFCA). While the US EPA does not currently regulate TFA, its chemical similarity to other PFCAs and its simple molecular structure make it a suitable model compound for studying the transformation of PFAS. We show that hydrothermal processing in compressed liquid water transforms TFA at relatively mild conditions (T = 150-250 °C, P < 30 MPa), initially yielding gaseous products, such as CHF3 and CO2, that naturally aspirate from the solution. Alkali amendment (e.g., NaOH) promotes the mineralization of CHF3, yielding dissolved fluoride, formate, and carbonate species as final products. Fluorine and carbon balances are closed using Raman spectroscopy and fluoride ion selective electrode measurements for experiments performed at alkaline conditions, where gas yields are negligible. Qualitative FTIR gas analysis allows for establishing the transformation pathways; however, the F-balance could not be quantitatively closed for experiments without NaOH amendment. The kinetics of TFA transformation under hydrothermal conditions are measured, showing little to no dependency on NaOH concentration, indicating that the thermal decarboxylation is a rate-limiting step. A proposed TFA transformation mechanism motivates additional work to generalize the hydrothermal reaction pathways to other PFCAs.


Assuntos
Ácido Trifluoracético , Ácido Trifluoracético/química , Água/química , Halogenação
2.
Talanta ; 270: 125562, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159354

RESUMO

Vapor detection is a noncontact sampling method, which is a less invasive means of explosives screening than physical swiping. Explosive vapor detection is a challenge due to the low levels of vapors available for detection. This study demonstrates that the parts-per-quadrillion sensitivity of atmospheric flow tube-mass spectrometry (AFT-MS) combined with a high-volume air sampler enables standoff detection of trace explosives vapor at distances of centimeters to meters. Standoff detection of explosives vapor was possible both upstream and downstream of the vapor source relative to room air currents. RDX vapor from a saturated source was detected at up to 2.5 m. Vapors from RDX residue and nitroglycerin residue were detected at distances up to 0.5 m. The sampling can be optimized by accounting for air movement in the room or environment, which could further extend standoff detection distances. Using AFT-MS with a high-volume sampler could also be effective for standoff vapor detection of drugs and additional chemical threats and could be useful for security screening applications such as at mail facilities, border crossings, and security checkpoints.

3.
Sci Total Environ ; 891: 164402, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37244609

RESUMO

Over four thousand portable air cleaners (PACs) with high-efficiency particulate air (HEPA) filters were distributed by Public Health - Seattle & King County to homeless shelters during the COVID-19 pandemic. This study aimed to evaluate the real-world effectiveness of these HEPA PACs in reducing indoor particles and understand the factors that affect their use in homeless shelters. Four rooms across three homeless shelters with varying geographic locations and operating conditions were enrolled in this study. At each shelter, multiple PACs were deployed based on the room volume and PAC's clean air delivery rate rating. The energy consumption of these PACs was measured using energy data loggers at 1-min intervals to allow tracking of their use and fan speed for three two-week sampling rounds, separated by single-week gaps, between February and April 2022. Total optical particle number concentration (OPNC) was measured at 2-min intervals at multiple indoor locations and an outdoor ambient location. The empirical indoor and outdoor total OPNC were compared for each site. Additionally, linear mixed-effects regression models (LMERs) were used to assess the relationship between PAC use time and indoor/outdoor total OPNC ratios (I/OOPNC). Based on the LMER models, a 10 % increase in the hourly, daily, and total time PACs were used significantly reduced I/OOPNC by 0.034 [95 % CI: 0.028, 0.040; p < 0.001], 0.051 [95 % CI: 0.020, 0.078; p < 0.001], and 0.252 [95 % CI: 0.150, 0.328; p < 0.001], respectively, indicating that keeping PACs on resulted in significantly lower I/OOPNC. The survey suggested that keeping PACs on and running was the main challenge when operating them in shelters. These findings suggested that HEPA PACs were an effective short-term strategy to reduce indoor particle levels in community congregate living settings during non-wildfire seasons and the need for formulating practical guidance for using them in such an environment.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , COVID-19 , Humanos , Material Particulado/análise , Poluição do Ar em Ambientes Fechados/prevenção & controle , Poluição do Ar em Ambientes Fechados/análise , Washington , Pandemias , COVID-19/prevenção & controle , Poeira , Poluentes Atmosféricos/análise
4.
Biosens Bioelectron ; 229: 115237, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36965380

RESUMO

Exhaled human breath contains a rich mixture of volatile organic compounds (VOCs) whose concentration can vary in response to disease or other stressors. Using simulated odorant-binding proteins (OBPs) and machine learning methods, we designed a multiplex of short VOC- and carbon-binding peptide probes that detect a characteristic "VOC fingerprint". Specifically, we target VOCs associated with COVID-19 in a compact, molecular sensor array that directly transduces vapor composition into multi-channel electrical signals. Rapidly synthesizable, chimeric VOC- and solid-binding peptides were derived from selected OBPs using multi-sequence alignment with protein database structures. Selective peptide binding to targeted VOCs and sensor surfaces was validated using surface plasmon resonance spectroscopy and quartz crystal microbalance. VOC sensing was demonstrated by peptide-sensitized, exposed-channel carbon nanotube transistors. The data-to-device pipeline enables the development of novel devices for non-invasive monitoring, diagnostics of diseases, and environmental exposure assessment.


Assuntos
Técnicas Biossensoriais , COVID-19 , Compostos Orgânicos Voláteis , Humanos , COVID-19/diagnóstico , Compostos Orgânicos Voláteis/química , Exposição Ambiental , Ressonância de Plasmônio de Superfície , Testes Respiratórios/métodos
5.
Chemosphere ; 327: 138358, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36906000

RESUMO

Cleanup and disposal of stockpiles and waste streams containing per- and polyfluoroalkyl substances (PFAS) require effective end-of-life destruction/mineralization technologies. Two classes of PFAS, perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs), are commonly found in legacy stockpiles, industrial waste streams, and as environmental pollutants. Continuous flow supercritical water oxidation (SCWO) reactors have been shown to destroy several PFAS and aqueous film-forming foams. However, a direct comparison of the SCWO efficacy for PFSAs and PFCAs has not been reported. We show the effectiveness of continuous flow SCWO treatment for a matrix of model PFCAs and PFSAs as a function of operating temperature. PFSAs appear to be significantly more recalcitrant than PFCAs in the SCWO environment. The SCWO treatment results in a destruction and removal efficiency of 99.999% at a T > 610 °C and at a residence time of ∼30 s. Fluoride recovery lags destruction PFAS at 510 °C and reaches >100% above 610 °C, confirming the formation of liquid and gaseous phase intermediate product during lower temperature oxidation. This paper establishes the threshold for destroying PFAS-containing liquids under SCWO conditions.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Temperatura , Água , Ácidos Carboxílicos , Ácidos Sulfônicos , Poluentes Químicos da Água/análise , Fluorocarbonos/análise
6.
Chemosphere ; 314: 137681, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36584826

RESUMO

As regulations are being established to limit the levels of per- and polyfluoroalkyl substances (PFAS) in drinking water and wastewater, effective treatment technologies are needed to remove or destroy PFAS in contaminated liquid matrices. Many military installations and airports have fire training ponds (FTPs) where PFAS-containing firefighting foams are discharged during training drills. FTP water disposal is expensive and challenging due to the high PFAS levels. Hydrothermal alkaline treatment (HALT) has previously been shown to destroy a wide range of PFAS compounds with a high degree of destruction and defluorination. In this study, we investigate the performance of a continuous flow HALT reactor for destroying PFAS in contaminated FTP water samples. Processing with 5 M-NaOH and 1.6 min of continuous processing results in >99% total PFAS destruction, and 10 min processing time yields >99% destruction of every measured PFAS species. Operating with 0.1 M-NaOH or 1 M-NaOH shows little effect on the destruction of measured perfluorosulfonic acids, while all measured perfluorocarboxylic acids and fluorotelomer sulfonates are reduced to levels below the method detection limits. Continuous HALT processing with sufficient NaOH loading appears to destroy parent PFAS compounds significantly faster than batch HALT processing, a positive indicator for scaling up HALT technology for practical applications in environmental site remediation activities.


Assuntos
Água Potável , Recuperação e Remediação Ambiental , Fluorocarbonos , Poluentes Químicos da Água , Água , Hidróxido de Sódio , Fluorocarbonos/análise , Poluentes Químicos da Água/análise
7.
Heliyon ; 8(12): e12242, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36578385

RESUMO

A novel single-stage solvolysis process is demonstrated for recycling carbon fibers from an epoxy-based composite material using 50 wt% acetic acid solution under subcritical conditions. The process yields 100% fiber recovery efficiency in less than 30 min at 300 °C. Qualitative SEM/EDS analysis of the fibers reveals that the recovered fibers are entirely free of resin, and the carbon fiber surfaces were not damaged. SEM images and gravimetric measurements of the composites treated at lower temperatures and short residence times show an initial increase in mass of the CFRP samples, suggesting a two-step process consisting of initial composite swelling due to uptake of solvent, followed by depolymerization and chemical decomposition of the polymer. FTIR and GC-MS analyses confirm resin decomposition and production of aromatic and aliphatic compounds.

8.
Chemosphere ; 307(Pt 2): 135888, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35931254

RESUMO

PER: and polyfluoroalkyl substances (PFAS) are a concerning and unique class of environmentally persistent contaminants with biotoxic effects. Decades of PFAS discharge into water and soil resulted in PFAS bioaccumulation in plants, animals, and humans. PFAS are very stable, and their treatment has become a global environmental challenge. Significant efforts have been made to achieve efficient and complete PFAS mineralization using existing and emerging technologies. Hydrothermal treatments in subcritical and supercritical water have emerged as promising end-of-life PFAS destruction technologies, attracting the attention of scholars, industry, and key stakeholders. This paper reviews the state-of-the-art research on the behavior of PFAS, PFAS precursors, PFAS alternatives, and PFAS-containing waste in hydrothermal processes, including the destruction and defluorination efficiency, the proposed reaction mechanisms, and the environmental impact of these treatments. Scientific literature shows that >99% degradation and >60% defluorination of PFAS can be achieved through subcritical and supercritical water processing. The limitations of current research are evaluated, special considerations are given to the challenges of technology maturation and scale-up from laboratory studies to large-scale industrial application, and potential future technological developments are proposed.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Bioacumulação , Fluorocarbonos/análise , Humanos , Solo , Água , Poluentes Químicos da Água/análise
9.
PLoS One ; 16(11): e0259745, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34762676

RESUMO

Low-cost optical scattering particulate matter (PM) sensors report total or size-specific particle counts and mass concentrations. The PM concentration and size are estimated by the original equipment manufacturer (OEM) proprietary algorithms, which have inherent limitations since particle scattering depends on particles' properties such as size, shape, and complex index of refraction (CRI) as well as environmental parameters such as temperature and relative humidity (RH). As low-cost PM sensors are not able to resolve individual particles, there is a need to characterize and calibrate sensors' performance under a controlled environment. Here, we present improved calibration algorithms for Plantower PMS A003 sensor for mass indices and size-resolved number concentration. An aerosol chamber experimental protocol was used to evaluate sensor-to-sensor data reproducibility. The calibration was performed using four polydisperse test aerosols. The particle size distribution OEM calibration for PMS A003 sensor did not agree with the reference single particle sizer measurements. For the number concentration calibration, the linear model without adjusting for the aerosol properties and environmental conditions yields an absolute error (NMAE) of ~ 4.0% compared to the reference instrument. The calibration models adjusted for particle CRI and density account for non-linearity in the OEM's mass concentrations estimates with NMAE within 5.0%. The calibration algorithms developed in this study can be used in indoor air quality monitoring, occupational/industrial exposure assessments, or near-source monitoring scenarios where field calibration might be challenging.


Assuntos
Poluentes Atmosféricos/química , Material Particulado/química , Aerossóis/química , Poluição do Ar em Ambientes Fechados , Algoritmos , Calibragem , Ambiente Controlado , Monitoramento Ambiental , Humanos , Umidade , Modelos Lineares , Exposição Ocupacional , Tamanho da Partícula , Refratometria , Reprodutibilidade dos Testes , Temperatura , Baixa Visão/metabolismo
11.
R Soc Open Sci ; 8(8): 202367, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34430040

RESUMO

Convection is a fundamental fluid transport phenomenon, where the large-scale motion of a fluid is driven, for example, by a thermal gradient or an electric potential. Modelling convection has given rise to the development of chaos theory and the reduced-order modelling of multiphysics systems; however, these models have been limited to relatively simple thermal convection phenomena. In this work, we develop a reduced-order model for chaotic electroconvection at high electric Rayleigh number. The chaos in this system is related to the standard Lorenz model obtained from Rayleigh-Benard convection, although our system is driven by a more complex three-way coupling between the fluid, the charge density, and the electric field. Coherent structures are extracted from temporally and spatially resolved charge density fields via proper orthogonal decomposition (POD). A nonlinear model is then developed for the chaotic time evolution of these coherent structures using the sparse identification of nonlinear dynamics (SINDy) algorithm, constrained to preserve the symmetries observed in the original system. The resulting model exhibits the dominant chaotic dynamics of the original high-dimensional system, capturing the essential nonlinear interactions with a simple reduced-order model.

12.
Anal Chem ; 93(33): 11433-11441, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34379402

RESUMO

Aerosols dispersed and transmitted through the air (e.g., particulate matter pollution and bioaerosols) are ubiquitous and one of the leading causes of adverse health effects and disease transmission. A variety of sampling methods (e.g., filters, cyclones, and impactors) have been developed to assess personal exposures. However, a gap still remains in the accessibility and ease-of-use of these technologies for people without experience or training in collecting airborne samples. Additionally, wet scrubbers (large non-portable industrial systems) utilize liquid sprays to remove aerosols from the air; the goal is to "scrub" (i.e., clean) the exhaust of industrial smokestacks, not collect the aerosols for analysis. Inspired by wet scrubbers, we developed a device fundamentally different from existing portable air samplers by using aerosolized microdroplets to capture aerosols in personal spaces (e.g., homes, offices, and schools). Our aerosol-sampling device is the size of a small teapot, can be operated without specialized training, and features a winding flow path in a supersaturated relative humidity environment, enabling droplet growth. The integrated open mesofluidic channels shuttle coalesced droplets to a collection chamber for subsequent sample analysis. Here, we present the experimental demonstration of aerosol capture in water droplets. An iterative study optimized the non-linear flow manipulating baffles and enabled an 83% retention of the aerosolized microdroplets in the confined volume of our device. As a proof-of-concept for aerosol capture into a liquid medium, 0.5-3 µm model particles were used to evaluate aerosol capture efficiency. Finally, we demonstrate that the device can capture and keep a bioaerosol (bacteriophage MS2) viable for downstream analysis.


Assuntos
Levivirus , Material Particulado , Aerossóis/análise , Microbiologia do Ar , Monitoramento Ambiental , Humanos , Tamanho da Partícula
13.
Talanta ; 234: 122633, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364442

RESUMO

The detection of trace amounts of explosive materials is critical to the security at mass transit centers (e.g., airports and railway stations). In a typical screening process, a trap is used to probe a surface of interest to collect and transfer particulate residue to a detector for analysis. The collection of residues from the surface being probed is widely viewed as the limiting step in this process. A multi-institutional study was performed to establish a methodology for the evaluation of sampling media collection efficiencies. Dry deposited residues of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), C-4 (an RDX-based explosive), and pentaerythritol tetranitrate (PETN) were harvested from acrylonitrile butadiene styrene (ABS) plastic, ballistic nylon (NYL), and uncoated aluminum surfaces using muslin, Texwipe cotton, and stainless-steel mesh traps. Transfer and collection efficiencies of the sample media were calculated based on liquid chromatography-mass spectrometry analysis. Dry transfer efficiencies (DTE%) to all tested surfaces were greater than 75%, with transfer to ABS plastic being the lowest. Collection efficiency (CE%) varied significantly across the traps and the surfaces, yet some conclusions can be drawn; nylon had the lowest CE% for all cases (∼10%), and the stainless steel mesh had the lowest CE% for the evaluated traps (∼20%). Though the testing parameters have been standardized among the participants to establish a framework for an independent comparison of contact sampling media and surfaces, substantial variations in the DTE% and the CE% were observed, suggesting that other variables can affect contact sampling.


Assuntos
Substâncias Explosivas , Tetranitrato de Pentaeritritol , Humanos , Espectrometria de Massas , Têxteis , Triazinas
14.
Sensors (Basel) ; 21(11)2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-34200380

RESUMO

Human exposure to infectious aerosols results in the transmission of diseases such as influenza, tuberculosis, and COVID-19. Most dental procedures generate a significant number of aerosolized particles, increasing transmission risk in dental settings. Since the generation of aerosols in dentistry is unavoidable, many clinics have started using intervention strategies such as area-filtration units and extraoral evacuation equipment, especially under the relatively recent constraints of the pandemic. However, the effectiveness of these devices in dental operatories has not been studied. Therefore, the ability of dental personnel to efficiently position and operate such instruments is also limited. To address these challenges, we utilized a real-time sensor network for assessment of aerosol dynamics during dental restoration and cleaning producers with and without intervention. The strategies tested during the procedures were (i) local area High-Efficiency Particle Air (HEPA) filters and (ii) Extra-Oral Suction Device (EOSD). The study was conducted at the University of Washington School of Dentistry using a network of 13 fixed sensors positioned within the operatory and one wearable sensor worn by the dental operator. The sensor network provides time and space-resolved particulate matter (PM) data. Three-dimensional (3D) visualization informed aerosol persistence in the operatory. It was found that area filters did not improve the overall aerosol concentration in dental offices in a significant way. A decrease in PM concentration by an average of 16% was observed when EOSD equipment was used during the procedures. The combination of real-time sensors and 3D visualization can provide dental personnel and facility managers with actionable feedback to effectively assess aerosol transmission in medical settings and develop evidence-based intervention strategies.


Assuntos
COVID-19 , Aerossóis , Humanos , Pandemias , Material Particulado , SARS-CoV-2
15.
Atmos Environ (1994) ; 2592021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34321954

RESUMO

The link between particulate matter (PM) air pollution and negative health effects is well-established. Air pollution was estimated to cause 4.9 million deaths in 2017 and PM was responsible for 94% of these deaths. In order to inform effective mitigation strategies in the future, further study of PM and its health effects is important. Here, we present a method for identifying sources of combustion generated PM using excitation-emission matrix (EEM) fluorescence spectroscopy and machine learning (ML) algorithms. PM samples were collected during a health effects exposure assessment panel study in Seattle. We use archived field samples from the exposure study and the associated positive matrix factorization (PMF) source apportionment based on X-ray fluorescence and light absorbing carbon measurements to train convolutional neural network and principal component regression algorithms. We show EEM spectra from cyclohexane extracts of the archived filter samples can be used to accurately apportion mobile and vegetative burning sources but were unable to detect crustal dust, Cl-rich, secondary sulfate and fuel oil sources. The use of this EEM-ML approach may be used to conduct PM exposure studies that include source apportionment of combustion sources.

16.
Chemosphere ; 279: 130834, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34134433

RESUMO

Effective technologies are needed for the destruction of per- and polyfluoroalkyl substances (PFAS). One promising technology is supercritical water oxidation (SCWO), which can be accommodated in batch or continuous reactors. Many PFAS-laden wastes consist primarily of solid particles, and batch SCWO processing may offer safe end-of-life PFAS destruction for these feedstocks. In this study, perfluorooctanesulfonate (PFOS) is reacted via supercritical water oxidation in a batch reactor at temperatures between 425 and 500 °C and residence times from 0 to 60 min, to determine the effect of both parameters on the extent of destruction and defluorination. Analysis of liquid products via targeted LC-QToF-MS does not indicate production of intermediate fluorocarbons. However, a low fluorine mass balance at temperatures of 425 and 450 °C may indicate the existence of fluorinated species in the gaseous and/or liquid product which are not detected by targeted analysis. Destruction and defluorination efficiencies are determined for each tested condition, with a maximum 70.0% PFOS destruction and 78.2% defluorination achieved after 60 min of reaction at 500 °C.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Oxirredução , Água
17.
PLoS One ; 16(5): e0251664, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34014964

RESUMO

Exposure to ultrafine combustion aerosols such as particulate matter (PM) from residential woodburning, forest fires, cigarette smoke, and traffic emission have been linked to adverse health outcomes. Excitation-emission matrix (EEM) spectroscopy presents a sensitive and cost-effective alternative for analysis of PM organic fraction. However, as with other analytical chemistry methods, the miniaturization is hindered by a solvent extraction step and a need for benchtop instrumentation. We present a methodology for collecting and in-situ analysis of airborne nanoparticles that eliminates labor-intensive sample preparation and miniaturizes the detection platform. Nanoparticles are electrostatically collected onto a transparent substrate coated with solid-phase (SP) solvent-polydimethylsiloxane (PDMS). The PM organic fraction is extracted into PDMS and analyzed in-situ, thus avoiding liquid-phase extraction. In the SP-EEM analysis, we evaluated external and internal excitation schemes. Internal excitation shows the lowest scattering interference but leads to signal masking from PDMS fluorescence for λ<250nm. The external excitation EEM spectra are dependent on the excitation light incident angle; ranges of 30-40° and 55-65° show the best results. SP-EEM spectra of woodsmoke and cigarette smoke samples are in good agreement with the EEM spectra of liquid-phase extracts. The SP-EEM technique can be used to develop wearable sensors for exposure assessments and environmental monitoring.


Assuntos
Material Particulado/análise , Poluentes Químicos da Água/análise , Aerossóis , Espectrometria de Fluorescência
18.
Talanta ; 231: 122356, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33965023

RESUMO

Surface sampling for trace explosives residues is a critical step in the security screening in which microparticles are collected for subsequent chemical analysis. The current surface swabbing approach suffers from limited sampling area coverage, uncertainty in harvesting efficiencies, and user bias. Non-contact sampling has received interest due to its ability to interrogate large surface areas without the redeposition of the collected sample. However, the aerodynamic liberation of energetic particles from different types of substrates has not been parameterized or directly compared with the contact sampling methods. Here, we report aerodynamic resuspension rates of TNT, RDX, and HMX microparticles from smooth, rough, and fibrous surfaces. The resuspension thresholds are correlated to the boundary layer properties, i.e., wall shear stresses (τw = 50-500Pa). These rates are then compared to contact sampling for five commercial swabs using a standardized swabbing method. LC-MS analysis is used for the quantification of particle removal efficiencies. Contact sampling has an advantage over the low shear stress cases for particle liberation from the smooth surfaces. Aerodynamic particle resuspension rates increase with the wall shear stress. It shows better results for rough and fibrous surfaces than contact removal for tested analytes.

19.
Sensors (Basel) ; 21(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924812

RESUMO

Digital microfluidics (DMF) devices enable precise manipulation of small liquid volumes in point-of-care testing. A printed circuit board (PCB) substrate is commonly utilized to build DMF devices. However, inkjet printing can be used to fabricate DMF circuits, providing a less expensive alternative to PCB-based DMF designs while enabling more rapid design iteration cycles. We demonstrate the cleanroom-free fabrication process of a low-cost inkjet-printed DMF circuit. We compare Kapton and polymethyl methacrylate (PMMA) as dielectric coatings by measuring the minimal droplet actuation voltage for a range of actuation frequencies. A minimum actuation voltage of 5.6 V was required for droplet movement with the PMMA layer thickness of 0.2 µm and a hydrophobic layer of 0.17 µm. Significant issues with PMMA dielectric breakdown were observed at actuation voltages above 10 V. In comparison, devices that utilized Kapton were found to be more robust, even at an actuation voltage up to 100 V.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica
20.
Proc Math Phys Eng Sci ; 476(2241): 20200220, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33071577

RESUMO

Electrohydrodynamic (EHD) thrust is produced when ionized fluid is accelerated in an electric field due to the momentum transfer between the charged species and neutral molecules. We extend the previously reported analytical model that couples space charge, electric field and momentum transfer to derive thrust force in one-dimensional planar coordinates. The electric current density in the model can be expressed in the form of Mott-Gurney law. After the correction for the drag force, the EHD thrust model yields good agreement with the experimental data from several independent studies. The EHD thrust expression derived from the first principles can be used in the design of propulsion systems and can be readily implemented in the numerical simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA