Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 10(1): 5235, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748506

RESUMO

Ferroic materials are well known to exhibit heterogeneity in the form of domain walls. Understanding the properties of these boundaries is crucial for controlling functionality with external stimuli and for realizing their potential for ultra-low power memory and logic devices as well as novel computing architectures. In this work, we employ synchrotron-based near-field infrared nano-spectroscopy to reveal the vibrational properties of ferroelastic (90[Formula: see text] ferroelectric) domain walls in the hybrid improper ferroelectric Ca[Formula: see text]Ti[Formula: see text]O[Formula: see text]. By locally mapping the Ti-O stretching and Ti-O-Ti bending modes, we reveal how structural order parameters rotate across a wall. Thus, we link observed near-field amplitude changes to underlying structural modulations and test ferroelectric switching models against real space measurements of local structure. This initiative opens the door to broadband infrared nano-imaging of heterogeneity in ferroics.

2.
Nat Commun ; 5: 3314, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24577074

RESUMO

How coherent quasiparticles emerge by doping quantum antiferromagnets is a key question in correlated electron systems, whose resolution is needed to elucidate the phase diagram of copper oxides. Recent resonant inelastic X-ray scattering (RIXS) experiments in hole-doped cuprates have purported to measure high-energy collective spin excitations that persist well into the overdoped regime and bear a striking resemblance to those found in the parent compound, challenging the perception that spin excitations should weaken with doping and have a diminishing effect on superconductivity. Here we show that RIXS at the Cu L3-edge indeed provides access to the spin dynamical structure factor once one considers the full influence of light polarization. Further we demonstrate that high-energy spin excitations do not correlate with the doping dependence of Tc, while low-energy excitations depend sensitively on doping and show ferromagnetic correlations. This suggests that high-energy spin excitations are marginal to pairing in cuprate superconductors.

3.
Phys Rev Lett ; 110(3): 037003, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23373946

RESUMO

The nature of metallicity and the level of electronic correlations in the antiferromagnetically ordered parent compounds are two important open issues for the iron-based superconductivity. We perform a temperature-dependent angle-resolved photoemission spectroscopy study of Fe(1.02)Te, the parent compound for iron chalcogenide superconductors. Deep in the antiferromagnetic state, the spectra exhibit a "peak-dip-hump" line shape associated with two clearly separate branches of dispersion, characteristics of polarons seen in manganites and lightly doped cuprates. As temperature increases towards the Néel temperature (T(N)), we observe a decreasing renormalization of the peak dispersion and a counterintuitive sharpening of the hump linewidth, suggestive of an intimate connection between the weakening electron-phonon (e-ph) coupling and antiferromagnetism. Our finding points to the highly correlated nature of the Fe(1.02)Te ground state featured by strong interactions among the charge, spin, and lattice and a good metallicity plausibly contributed by the coherent polaron motion.

4.
Phys Rev Lett ; 109(17): 176402, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23215207

RESUMO

The spectral response and physical features of the 2D Hubbard-Holstein model are calculated both in equilibrium at zero and low chemical dopings, and after an ultrashort powerful light pulse, in undoped systems. At equilibrium and at strong charge-lattice couplings, the optical conductivity reveals a three-peak structure in agreement with experimental observations. After an ultrashort pulse and at nonzero electron-phonon interaction, phonon and spin subsystems oscillate with the phonon period T(ph)≈80 fs. The decay time of the phonon oscillations is about 150-200 fs, similar to the relaxation time of the charge system. We propose a criterion for observing these oscillations in high T(c) compounds: the time span of the pump light pulse τ(pump) has to be shorter than the phonon oscillation period T(ph).

5.
Phys Rev Lett ; 109(24): 246404, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23368352

RESUMO

We present a determinant quantum Monte Carlo study of the competition between instantaneous on-site Coulomb repulsion and retarded phonon-mediated attraction between electrons, as described by the two-dimensional Hubbard-Holstein model. At half filling, we find a strong competition between antiferromagnetism (AFM) and charge-density-wave (CDW) order. We demonstrate that a simple picture of AFM-CDW competition that incorporates the phonon-mediated attraction into an effective-U Hubbard model requires significant refinement. Specifically, retardation effects slow the onset of charge order so that CDW order remains absent even when the effective U is negative. This delay opens a window where neither AFM nor CDW order is well established and where there are signatures of a possible metallic phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA