RESUMO
Bombali virus (BOMV) is a novel Orthoebolavirus that has been detected in free-tailed bats in Sierra Leone, Guinea, Kenya, and Mozambique. We screened our collection of 349 free-tailed bat lungs collected in Côte d'Ivoire and Tanzania for BOMV RNA and tested 228 bat blood samples for BOMV antibodies. We did not detect BOMV-specific antibodies but found BOMV RNA in a Mops condylurus bat from Tanzania, marking the first detection of an ebolavirus in this country. Our findings further expand the geographic range of BOMV and support M. condylurus' role as a natural BOMV host.
Assuntos
Quirópteros , Animais , Quirópteros/virologia , Tanzânia , Anticorpos Antivirais/sangue , Filogenia , RNA Viral/genética , Côte d'Ivoire , Ebolavirus/isolamento & purificação , Ebolavirus/genética , Ebolavirus/imunologia , Pulmão/virologiaRESUMO
PARP7 was reported to promote tumor growth in a cell-autonomous manner and by repressing the antitumor immune response. Nevertheless, the molecular mechanism of how PARP7-mediated ADP-ribosylation exerts these effects in cancer cells remains elusive. Here, we identified PARP7 as a nuclear and cysteine-specific mono-ADP-ribosyltransferase that modifies targets critical for regulating transcription, including the AP-1 transcription factor FRA1. Loss of FRA1 ADP-ribosylation via PARP7 inhibition by RBN-2397 or mutation of the ADP-ribosylation site C97 increased FRA1 degradation by the proteasome via PSMC3. The reduction in FRA1 protein levels promoted IRF1- and IRF3-dependent cytokine as well as proapoptotic gene expression, culminating in CASP8-mediated apoptosis. Furthermore, high PARP7 expression was indicative of the PARP7 inhibitor response in FRA1-positive lung and breast cancer cells. Collectively, our findings highlight the connected roles of PARP7 and FRA1 and emphasize the clinical potential of PARP7 inhibitors for FRA1-driven cancers.
Assuntos
ADP-Ribosilação , Neoplasias , Proteínas de Transporte de Nucleosídeos , Proteínas Proto-Oncogênicas c-fos , Humanos , ADP Ribose Transferases/metabolismo , Apoptose , Transformação Celular Neoplásica , Regulação da Expressão Gênica , Fator Regulador 1 de Interferon/genética , Fator Regulador 3 de Interferon/metabolismo , Neoplasias/genética , Proteínas de Transporte de Nucleosídeos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismoRESUMO
Coffee silverskin (CS) is the thin epidermis covering and protecting the coffee bean and it represents the main by-product of the coffee roasting process. CS has recently gained attention due to its high content in bioactive molecules and the growing interest in valuable reutilization of waste products. Drawing inspiration from its biological function, here its potential in cosmetic applications was investigated. CS was recovered from one of the largest coffee roasters located in Switzerland and processed through supercritical CO2 extraction, thereby generating coffee silverskin extract. Chemical profiling of this extract revealed the presence of potent molecules, among which cafestol and kahweol fatty acid esters, as well as acylglycerols, ß-sitosterol and caffeine. The CS extract was then dissolved in organic shea butter, yielding the cosmetic active ingredient SLVR'Coffee™. In vitro gene expression studies performed on keratinocytes showed an upregulation of genes involved in oxidative stress responses and skin-barrier functionality upon treatment with the coffee silverskin extract. In vivo, our active protected the skin against Sodium Lauryl Sulfate (SLS)-induced irritation and accelerated its recovery. Furthermore, this active extract improved measured as well as perceived skin hydration in female volunteers, making it an innovative, bioinspired ingredient that comforts the skin and benefits the environment.
Assuntos
Antioxidantes , Cosméticos , Humanos , Feminino , Antioxidantes/farmacologia , Pele/metabolismo , Estresse Oxidativo , AlimentosRESUMO
Decades after its discovery in East Africa, Zika virus (ZIKV) emerged in Brazil in 2013 and infected millions of people during intense urban transmission. Whether vertebrates other than humans are involved in ZIKV transmission cycles remained unclear. Here, we investigate the role of different animals as ZIKV reservoirs by testing 1723 sera of pets, peri-domestic animals and African non-human primates (NHP) sampled during 2013-2018 in Brazil and 2006-2016 in Côte d'Ivoire. Exhaustive neutralization testing substantiated co-circulation of multiple flaviviruses and failed to confirm ZIKV infection in pets or peri-domestic animals in Côte d'Ivoire (n=259) and Brazil (n=1416). In contrast, ZIKV seroprevalence was 22.2% (2/9, 95% CI, 2.8-60.1) in West African chimpanzees (Pan troglodytes verus) and 11.1% (1/9, 95% CI, 0.3-48.3) in king colobus (Colobus polycomos). Our results indicate that while NHP may represent ZIKV reservoirs in Africa, pets or peri-domestic animals likely do not play a role in ZIKV transmission cycles.
Assuntos
Animais Domésticos/virologia , Primatas/virologia , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/virologia , Zika virus , África , Animais , Brasil , Côte d'Ivoire , Humanos , Testes de Neutralização , Estudos Soroepidemiológicos , Infecção por Zika virus/transmissãoRESUMO
Mechatronic and soft robotics are taking inspiration from the animal kingdom to create new high-performance robots. Here, we focused on marine biomimetic research and used innovative bibliographic statistics tools, to highlight established and emerging knowledge domains. A total of 6980 scientific publications retrieved from the Scopus database (1950-2020), evidencing a sharp research increase in 2003-2004. Clustering analysis of countries collaborations showed two major Asian-North America and European clusters. Three significant areas appeared: (i) energy provision, whose advancement mainly relies on microbial fuel cells, (ii) biomaterials for not yet fully operational soft-robotic solutions; and finally (iii), design and control, chiefly oriented to locomotor designs. In this scenario, marine biomimicking robotics still lacks solutions for the long-lasting energy provision, which presently hinders operation autonomy. In the research environment, identifying natural processes by which living organisms obtain energy is thus urgent to sustain energy-demanding tasks while, at the same time, the natural designs must increasingly inform to optimize energy consumption.
RESUMO
Background: Blood cultures (BC) have a high clinical relevance and are a priority specimen for surveillance of antimicrobial resistance. Manual BC are still most frequently used in resource-limited settings. Data on automated BC performance in Africa are scarce. We implemented automated BC at a surveillance site of the African Network for improved Diagnostics, Epidemiology and Management of Common Infectious Agents (ANDEMIA). Methods: Between June 2017 and January 2018, pairs of automated BC (BacT/ALERT®FA Plus) and manual BC (brain-heart infusion broth) were compared at a University hospital in Bouaké, Côte d'Ivoire. BC were inoculated each with a target blood volume of 10 ml from the same venipuncture. Automated BC were incubated for up to 5 days, manual BC for up to 10 days. Terminal subcultures were performed for manual BC only. The two systems were compared regarding yield, contamination, and turnaround time. For quality assurance, isolates were retested in a German routine microbiological laboratory. Results: BC sampling was increased from on average 24 BC to 63 BC per month. A total of 337 matched pairs of BC were included. Automated BC was positive in 36.5%, manual BC in 24.0% (p-value < 0.01), proportion of contamination was 47.9 and 43.8%, respectively (p-value = 1.0). Turnaround time of positive BC was shortened by 2.5 days with automated compared to manual BC (p < 0.01). Most common detected pathogens in both systems were Klebsiella spp. (26.0%) and Staphylococcus aureus (18.2%). Most contaminants were members of the skin flora. Retesting of 162 isolates was concordant in 79.6% on family level. Conclusions: Implementing automated BC in a resource-limited setting is possible and improves microbiological diagnostic performance. Automated BC increased yield and shortened turnaround times. Regular training and mentorship of clinicians has to be intensified to increase number and quality of BC. Pre-analytical training to improve diagnostic stewardship is essential when implementing a new microbiological method. Retesting highlighted that manual identification and antimicrobial susceptibility testing can be of good quality and sustainable. The implementation of automated tools should be decided individually according to economic considerations, number of samples, stable supply chain of consumables, and technical sustainability.
RESUMO
Blood and plasma proteins are heavily investigated as biomarkers for different diseases. However, the post-translational modification states of these proteins are rarely analyzed since blood contains many enzymes that rapidly remove these modifications after sampling. In contrast to the well-described role of protein ADP-ribosylation in cells and organs, its role in blood remains mostly uncharacterized. Here, we discovered that plasma phosphodiesterases and/or ADP-ribosylhydrolases rapidly demodify in vitro ADP-ribosylated proteins. Thus, to identify the in vivo whole blood and plasma ADP-ribosylomes, we established a mass-spectrometry-based workflow that was applied to blood samples collected from LPS-treated pigs (Sus scrofa domesticus), which serves as a model for human systemic inflammatory response syndrome. These analyses identified 60 ADP-ribosylated proteins, 17 of which were ADP-ribosylated plasma proteins. This new protocol provides an important step forward for the rapidly developing field of ADP-ribosylation and defines the blood and plasma ADP-ribosylomes under both healthy and disease conditions.
Assuntos
ADP-Ribosilação , Processamento de Proteína Pós-Traducional , Difosfato de Adenosina , Adenosina Difosfato Ribose/metabolismo , Animais , Espectrometria de Massas , Proteínas/metabolismo , SuínosRESUMO
In addition to its role as an electron transporter, mitochondrial nicotinamide adenine dinucleotide (NAD+) is an important co-factor for enzymatic reactions, including ADP-ribosylation. Although mitochondria harbor the most intra-cellular NAD+, mitochondrial ADP-ribosylation remains poorly understood. Here we provide evidence for mitochondrial ADP-ribosylation, which was identified using various methodologies including immunofluorescence, western blot, and mass spectrometry. We show that mitochondrial ADP-ribosylation reversibly increases in response to respiratory chain inhibition. Conversely, H2O2-induced oxidative stress reciprocally induces nuclear and reduces mitochondrial ADP-ribosylation. Elevated mitochondrial ADP-ribosylation, in turn, dampens H2O2-triggered nuclear ADP-ribosylation and increases MMS-induced ARTD1 chromatin retention. Interestingly, co-treatment of cells with the mitochondrial uncoupler FCCP decreases PARP inhibitor efficacy. Together, our results suggest that mitochondrial ADP-ribosylation is a dynamic cellular process that impacts nuclear ADP-ribosylation and provide evidence for a NAD+-mediated mitochondrial-nuclear crosstalk.
Assuntos
ADP-Ribosilação , Núcleo Celular/enzimologia , Mitocôndrias/enzimologia , NAD/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , ADP-Ribosilação/efeitos dos fármacos , Animais , Antimicina A/análogos & derivados , Antimicina A/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/genética , Cromatina/química , Cromatina/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Metacrilatos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/enzimologia , Oligomicinas/farmacologia , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/enzimologia , Poli(ADP-Ribose) Polimerase-1/genética , Rotenona/farmacologia , Tiazóis/farmacologiaRESUMO
ADP-ribosylation is a reversible post-translational modification of proteins that has been linked to many biological processes. The identification of ADP-ribosylated proteins and particularly of their acceptor amino acids remains a major challenge. The attachment sites of the modification are difficult to localize by mass spectrometry (MS) because of the labile nature of the linkage and the complex fragmentation pattern of the ADP-ribose in MS/MS experiments. In this study we performed a comprehensive analysis of higher-energy collisional dissociation (HCD) spectra acquired from ADP-ribosylated peptides which were modified on arginine, serine, glutamic acid, aspartic acid, tyrosine, or lysine residues. In addition to the fragmentation of the peptide backbone, various cleavages of the ADP-ribosylated amino acid side chains were investigated. We focused on gas-phase fragmentations that were specific either to ADP-ribosylated arginine or to ADP-ribosylated serine and other O-linked ADP-ribosylations. The O-glycosidic linkage between ADP-ribose and serine, glutamic acid, or aspartic acid was the major cleavage site, making localization of these modification sites difficult. In contrast, the bond between ADP-ribose and arginine was relatively stable. The main cleavage site was the inner bond of the guanidine group, which resulted in the formation of ADP-ribosylated carbodiimide and of ornithine in place of modified arginine. Taking peptide fragment ions resulting from this specific cleavage into account, a considerably larger number of peptides containing ADP-ribosylated arginine were identified in database searches. Furthermore, the presence of diagnostic ions and of losses of fragments from peptide ions allowed us, in most cases, to distinguish between ADP-ribosylated arginine and serine residues.
Assuntos
Arginina/química , Espectrometria de Massas/métodos , Peptídeos/química , ADP-Ribosilação , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/metabolismo , Arginina/metabolismo , Bases de Dados de Proteínas , Gases , Guanidina/química , Processamento de Proteína Pós-Traducional , Serina/química , Serina/metabolismoRESUMO
Many non-human primate species in sub-Saharan Africa are infected with Treponema pallidum subsp. pertenue, the bacterium causing yaws in humans. In humans, yaws is often characterized by lesions of the extremities and face, while T. pallidum subsp. pallidum causes venereal syphilis and is typically characterized by primary lesions on the genital, anal or oral mucosae. It remains unclear whether other T. pallidum subspecies found in humans also occur in non-human primates and how the genomic diversity of non-human primate T. pallidum subsp. pertenue lineages is distributed across hosts and space. We observed orofacial and genital lesions in sooty mangabeys (Cercocebus atys) in Taï National Park, Côte d'Ivoire and collected swabs and biopsies from symptomatic animals. We also collected non-human primate bones from 8 species in Taï National Park and 16 species from 11 other sites across sub-Saharan Africa. Samples were screened for T. pallidum DNA using polymerase chain reactions (PCRs) and we used in-solution hybridization capture to sequence T. pallidum genomes. We generated three nearly complete T. pallidum genomes from biopsies and swabs and detected treponemal DNA in bones of six non-human primate species in five countries, allowing us to reconstruct three partial genomes. Phylogenomic analyses revealed that both orofacial and genital lesions in sooty mangabeys from Taï National Park were caused by T. pallidum subsp. pertenue. We showed that T. pallidum subsp. pertenue has infected non-human primates in Taï National Park for at least 28 years and has been present in two non-human primate species that had not been described as T. pallidum subsp. pertenue hosts in this ecosystem, western chimpanzees (Pan troglodytes verus) and western red colobus (Piliocolobus badius), complementing clinical evidence that started accumulating in Taï National Park in 2014. More broadly, simian T. pallidum subsp. pertenue strains did not form monophyletic clades based on host species or the symptoms caused, but rather clustered based on geography. Geographical clustering of T. pallidum subsp. pertenue genomes might be compatible with cross-species transmission of T. pallidum subsp. pertenue within ecosystems or environmental exposure, leading to the acquisition of closely related strains. Finally, we found no evidence for mutations that confer antimicrobial resistance.
Assuntos
Cercocebus atys/microbiologia , Genoma Bacteriano/genética , Doenças dos Macacos/transmissão , Treponema/genética , Bouba/veterinária , Animais , Côte d'Ivoire , Sequenciamento de Nucleotídeos em Larga Escala , Doenças dos Macacos/microbiologia , Reação em Cadeia da Polimerase , Treponema/isolamento & purificação , Sequenciamento Completo do Genoma , Bouba/microbiologia , Bouba/transmissãoRESUMO
Protein ADP-ribosylation is a reversible post-translational modification that regulates important cellular functions. The identification of modified proteins has proven challenging and has mainly been achieved via enrichment methodologies. Random mutagenesis was used here to develop an engineered Af1521 ADP-ribose binding macro domain protein with 1000-fold increased affinity towards ADP-ribose. The crystal structure reveals that two point mutations K35E and Y145R form a salt bridge within the ADP-ribose binding domain. This forces the proximal ribose to rotate within the binding pocket and, as a consequence, improves engineered Af1521 ADPr-binding affinity. Its use in our proteomic ADP-ribosylome workflow increases the ADP-ribosylated protein identification rates and yields greater ADP-ribosylome coverage. Furthermore, generation of an engineered Af1521 Fc fusion protein confirms the improved detection of cellular ADP-ribosylation by immunoblot and immunofluorescence. Thus, this engineered isoform of Af1521 can also serve as a valuable tool for the analysis of cellular ADP-ribosylation under in vivo conditions.
Assuntos
ADP-Ribosilação/fisiologia , Adenosina Difosfato Ribose/metabolismo , Engenharia de Proteínas/métodos , Proteínas/metabolismo , Adenosina Difosfato Ribose/química , Adenosina Difosfato Ribose/genética , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Proteínas de Transporte/metabolismo , Células HEK293 , Células HeLa , Humanos , Modelos Moleculares , Mutagênese , Conformação Proteica , Domínios Proteicos , Processamento de Proteína Pós-Traducional , Proteínas/química , Proteínas/isolamento & purificação , Proteômica/métodosRESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
To date, only two rodent-borne hantaviruses have been detected in sub-Saharan Africa. Here, we report the detection of a yet unknown hantavirus in a Natal mastomys (Mastomys natalensis) in Méliandou, Guinea, in 2014. The phylogenetic placement of this virus suggests that it might represent a cross-order spillover event from an unknown bat or eulipotyphlan host.
Assuntos
Infecções por Hantavirus/veterinária , Murinae/virologia , Orthohantavírus/isolamento & purificação , Doenças dos Roedores/virologia , Animais , Guiné , Orthohantavírus/classificação , Orthohantavírus/genética , Infecções por Hantavirus/virologia , FilogeniaRESUMO
Induction of nuclear factor of activated T cell cytoplasmic 1 (NFATc1) by macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) is essential for macrophage differentiation into osteoclasts (OCs), but the underlying mechanisms remain unclear. The ability of poly(ADP-ribose) polymerase 1 (PARP1) to poly-ADP-ribosylate NFATc1 in T cells prompted us to investigate the PARP1 and NFATc1 interaction during osteoclastogenesis. However, extensive studies failed to directly link PARP1 to NFATc1. A combination of transcriptomics and proteomics studies was then used to identify PARP1 targets under these conditions. These unbiased approaches in conjunction with site-directed mutagenesis studies revealed that PARP1 inhibited NFATc1 expression and OC formation by ADP-ribosylating histone H2B at serine 7 and decreasing the occupancy of this histone variant at the NFATc1 promoter. The anti-osteoclastogenic function of PARP1 was confirmed in vivo in several mouse models of PARP1 loss-of-function or gain-of-function, including a novel model in which PARP1 was conditionally ablated in myeloid cells. Thus, PARP1 ADP-ribosylates H2B to negatively regulate NFATc1 expression and OC differentiation. © 2019 American Society for Bone and Mineral Research.
Assuntos
Histonas , Osteoclastos , Animais , Diferenciação Celular , Camundongos , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFI , Osteoclastos/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Linfócitos T/metabolismoRESUMO
Antibacterial autophagy (xenophagy) is an important host defense, but how it is initiated is unclear. Here, we performed a bacterial transposon screen and identified a T3SS effector SopF that potently blocked Salmonella autophagy. SopF was a general xenophagy inhibitor without affecting canonical autophagy. S. Typhimurium ΔsopF resembled S. flexneri ΔvirAΔicsB with the majority of intracellular bacteria targeted by autophagy, permitting a CRISPR screen that identified host V-ATPase as an essential factor. Upon bacteria-caused vacuolar damage, the V-ATPase recruited ATG16L1 onto bacteria-containing vacuole, which was blocked by SopF. Mammalian ATG16L1 bears a WD40 domain required for interacting with the V-ATPase. Inhibiting autophagy by SopF promoted S. Typhimurium proliferation in vivo. SopF targeted Gln124 of ATP6V0C in the V-ATPase for ADP-ribosylation. Mutation of Gln124 also blocked xenophagy, but not canonical autophagy. Thus, the discovery of SopF reveals the V-ATPase-ATG16L1 axis that critically mediates autophagic recognition of intracellular pathogen.
Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Proteínas de Bactérias/genética , Macroautofagia , Salmonella/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Fatores de Virulência/genética , ADP-Ribosilação , Proteínas Relacionadas à Autofagia/deficiência , Proteínas Relacionadas à Autofagia/genética , Proteínas de Bactérias/metabolismo , Sistemas CRISPR-Cas/genética , Edição de Genes , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica , Salmonella/patogenicidade , Sistemas de Secreção Tipo III/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , Fatores de Virulência/metabolismoRESUMO
The clostridium-like ecto-ADP-ribosyltransferase ARTC1 is expressed in a highly restricted manner in skeletal muscle and heart tissue. Although ARTC1 is well studied, the identification of ARTC1 targets in vivo and subsequent characterization of ARTC1-regulated cellular processes on the proteome level have been challenging and only a few ARTC1-ADP-ribosylated targets are known. Applying our recently developed mass spectrometry-based workflow to C2C12 myotubes and to skeletal muscle and heart tissues from wild-type mice, we identify hundreds of ARTC1-ADP-ribosylated proteins whose modifications are absent in the ADP-ribosylome of ARTC1-deficient mice. These proteins are ADP-ribosylated on arginine residues and mainly located on the cell surface or in the extracellular space. They are associated with signal transduction, transmembrane transport, and muscle function. Validation of hemopexin (HPX) as a ARTC1-target protein confirmed the functional importance of ARTC1-mediated extracellular arginine ADP-ribosylation at the systems level.
Assuntos
ADP Ribose Transferases/metabolismo , Hemopexina/metabolismo , Proteínas Musculares/genética , Debilidade Muscular/genética , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Processamento de Proteína Pós-Traducional , ADP Ribose Transferases/química , ADP Ribose Transferases/genética , ADP-Ribosilação , Animais , Arginina/metabolismo , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular , Ontologia Genética , Heme/química , Heme/metabolismo , Hemopexina/química , Hemopexina/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Anotação de Sequência Molecular , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Proteínas Musculares/classificação , Proteínas Musculares/metabolismo , Debilidade Muscular/metabolismo , Debilidade Muscular/patologia , Músculo Esquelético/patologia , Miocárdio/patologia , Ligação Proteica , Proteoma/genética , Proteoma/metabolismo , Proteômica/métodos , Transdução de SinaisRESUMO
Despite recent mass spectrometry (MS)-based breakthroughs, comprehensive ADP-ribose (ADPr)-acceptor amino acid identification and ADPr-site localization remain challenging. Here, we report the establishment of an unbiased, multistep ADP-ribosylome data analysis workflow that led to the identification of tyrosine as a novel ARTD1/PARP1-dependent in vivo ADPr-acceptor amino acid. MS analyses of in vitro ADP-ribosylated proteins confirmed tyrosine as an ADPr-acceptor amino acid in RPS3A (Y155) and HPF1 (Y238) and demonstrated that trans-modification of RPS3A is dependent on HPF1. We provide an ADPr-site Localization Spectra Database (ADPr-LSD), which contains 288 high-quality ADPr-modified peptide spectra, to serve as ADPr spectral references for correct ADPr-site localizations.
Assuntos
ADP-Ribosilação , Adenosina Difosfato Ribose/metabolismo , Tirosina/metabolismo , Sequência de Aminoácidos , Proteínas de Transporte/metabolismo , Dano ao DNA , Células HeLa , Humanos , Espectrometria de Massas , Proteínas Nucleares/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Fosfoproteínas/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteoma/metabolismo , RNA Interferente Pequeno/metabolismo , Reprodutibilidade dos TestesRESUMO
High-risk ESBL-producing Enterobacteriaceae (ESBL-E) have been described in wild birds and rodents worldwide. Rats are of special interest not only due to their indicator role for environmental pollution with multi-resistant bacteria but also as possible infection source. Data on the presence of high-risk ESBL-E in urban wildlife from Africa remain scarce, however. Twenty-nine animals from three different rat (Rattus) species were captured in the city of Conakry (Guinea, West Africa) in 2015. Rectal swabs were analyzed for ESBL-E using selective media. Species typing and phenotypic antimicrobial resistance analysis to broad-spectrum beta-lactams and other classes of antimicrobials was performed for Enterobacteriaceae-like isolates using the VITEK®2 system (BioMérieux, Germany). Confirmed ESBL-producing E. coli and K. pneumoniae were whole-genome sequenced and resistance genes, phylogenetic background and genes related to bacterial fitness and virulence were analyzed. In total, six of twenty-nine rats (20%) carried ESBL-E (K. pneumoniae and E. coli). All ESBL-producers were multi-drug resistant with blaCTX-M-15 as the dominating ESBL-type. Interestingly, ESBL-associated clonal lineages E. coli ST38 and K. pneumoniae ST307 were found. The ESBL-plasmid in K. pneumoniae ST307 revealed high sequence similarities to pKPN3-307_TypeC, a >200 kbp IncFII plasmid originating from a human clinical ST307 isolate. This was in contrast to the core genome: the rat isolate was distantly related to the human clinical ST307 isolate (27 SNPs/Mbp). In addition, we identified π-fimbrial, capsule 2, and glycogen synthesis clusters in the rodent ST307 isolate, whose involvement in the adaptation to survival outside the host and in human urinary tracts has been suggested. Our results demonstrate the presence of clinically relevant, ESBL-producing K. pneumoniae ST307 and E. coli ST38 clonal lineages in an urban West African rat population. The human community is likely the initial source of ESBL-E however, rats might function as infection source and transmission hub, accelerated by frequent interactions at a human-wildlife interface.
RESUMO
ADP-ribosylation is a posttranslational modification that exists in monomeric and polymeric forms. Whereas the writers (e.g. ARTD1/PARP1) and erasers (e.g. PARG, ARH3) of poly-ADP-ribosylation (PARylation) are relatively well described, the enzymes involved in mono-ADP-ribosylation (MARylation) have been less well investigated. While erasers for the MARylation of glutamate/aspartate and arginine have been identified, the respective enzymes with specificity for serine were missing. Here we report that, in vitro, ARH3 specifically binds and demodifies proteins and peptides that are MARylated. Molecular modeling and site-directed mutagenesis of ARH3 revealed that numerous residues are critical for both the mono- and the poly-ADP-ribosylhydrolase activity of ARH3. Notably, a mass spectrometric approach showed that ARH3-deficient mouse embryonic fibroblasts are characterized by a specific increase in serine-ADP-ribosylation in vivo under untreated conditions as well as following hydrogen peroxide stress. Together, our results establish ARH3 as a serine mono-ADP-ribosylhydrolase and as an important regulator of the basal and stress-induced ADP-ribosylome.
Assuntos
ADP-Ribosilação/fisiologia , Glicosídeo Hidrolases/fisiologia , Poli(ADP-Ribose) Polimerase-1/fisiologia , Serina/metabolismo , ADP-Ribosilação/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Ensaios Enzimáticos , Técnicas de Inativação de Genes , Glicosídeo Hidrolases/química , Humanos , Peróxido de Hidrogênio/farmacologia , Espectrometria de Massas , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteômica/métodosRESUMO
Habituation of wild great apes for tourism and research has had a significant positive effect on the conservation of these species. However, risks associated with such activities have been identified, specifically the transmission of human respiratory viruses to wild great apes, causing high morbidity and, occasionally, mortality. Here, we investigate the source of bacterial-viral co-infections in wild and captive chimpanzee communities in the course of several respiratory disease outbreaks. Molecular analyses showed that human respiratory syncytial viruses (HRSV) and human metapneumoviruses (HMPV) were involved in the etiology of the disease. In addition our analysis provide evidence for coinfection with Streptococcus (S.) pneumoniae. Characterisation of isolates from wild chimpanzees point towards a human origin of these bacteria. Transmission of these bacteria is of concern because - in contrast to HRSV and HMPV - S. pneumoniae can become part of the nasopharyngeal flora, contributing to the severity of respiratory disease progression. Furthermore these bacteria have the potential to spread to other individuals in the community and ultimately into the population. Targeted vaccination programs could be used to vaccinate habituated great apes but also human populations around great ape habitats, bringing health benefits to both humans and wild great apes.