Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JAC Antimicrob Resist ; 3(1): dlab028, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34223102

RESUMO

OBJECTIVES: Identification and validation of novel therapeutic targets is imperative to tackle the rise of drug resistance in tuberculosis. An essential Mur ligase-like gene (Rv3712), expected to be involved in cell-wall peptidoglycan (PG) biogenesis and conserved across mycobacteria, including the genetically depleted Mycobacterium leprae, was the primary focus of this study. METHODS: Biochemical analysis of Rv3712 was performed using inorganic phosphate release assays. The operon structure was identified using reverse-transcriptase PCR and a transcription/translation fusion vector. In vivo mycobacterial protein fragment complementation assays helped generate the interactome. RESULTS: Rv3712 was found to be an ATPase. Characterization of its operon revealed a mycobacteria-specific promoter driving the co-transcription of Rv3712 and Rv3713. The two gene products were found to interact with each other in vivo. Sequence-based functional assignments reveal that Rv3712 and Rv3713 are likely to be the mycobacterial PG precursor-modifying enzymes MurT and GatD, respectively. An in vivo network involving Mtb-MurT, regulatory proteins and cell division proteins was also identified. CONCLUSIONS: Understanding the role of the enzyme complex in the context of PG metabolism and cell division, and the implications for antimicrobial resistance and host immune responses will facilitate the design of therapeutics that are targeted specifically to M. tuberculosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA