RESUMO
Assisted reproductive technologies (ART) may increase risk for abnormal placental development, preterm delivery and low birthweight. We investigated placental morphology, transporter expression and paired maternal/umbilical fasting blood nutrient levels in human term pregnancies conceived naturally (n = 10) or by intracytoplasmic sperm injection (ICSI; n = 11). Maternal and umbilical vein blood from singleton term (>37 weeks) C-section pregnancies were assessed for levels of free amino acids, glucose, free fatty acids (FFA), cholesterol, high density lipoprotein (HDL), low density lipoprotein (LDL), very low-density lipoprotein (VLDL) and triglycerides. We quantified placental expression of GLUT1 (glucose), SNAT2 (amino acids), P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) (drug) transporters, and placental morphology and pathology. Following ICSI, placental SNAT2 protein expression was downregulated and umbilical cord blood levels of citrulline were increased, while FFA levels were decreased at term (p < 0.05). Placental proliferation and apoptotic rates were increased in ICSI placentae (p < 0.05). No changes in maternal blood nutrient levels, placental GLUT1, P-gp and BCRP expression, or placental histopathology were observed. In term pregnancies, ICSI impairs placental SNAT2 transporter expression and cell turnover, and alters umbilical vein levels of specific nutrients without changing placental morphology. These may represent mechanisms through which ICSI impacts pregnancy outcomes and programs disease risk trajectories in offspring across the life course.
Assuntos
Fertilização , Sangue Fetal/metabolismo , Nutrientes , Placenta/metabolismo , Terceiro Trimestre da Gravidez , Injeções de Esperma Intracitoplásmicas/efeitos adversos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adulto , Sistema A de Transporte de Aminoácidos/metabolismo , Apoptose , Proliferação de Células , Feminino , Transportador de Glucose Tipo 1/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Placenta/patologia , Gravidez , Resultado da Gravidez , Nascimento Prematuro/etiologia , Técnicas de Reprodução Assistida/efeitos adversos , Injeções de Esperma Intracitoplásmicas/métodosRESUMO
Aim: Human Leukocyte Antigen-G (HLA-G) is a non-classical class I molecule that is involved in maternal-fetal immunotolerance. In cancer, this molecule contributes to the tumor escape. The aim of this study was to evaluate the 14 bp In/Del and +3142 C > G polymorphisms of the HLA-G 3' UTR and its relation with plasma and tissue HLA-G expression in patients with grade IV (high-grade) and grade I/II (low-grade) gliomas and controls.Patients and methods: Peripheral blood and tumor biopsies were collected from 85 patients with gliomas and blood samples from 94 controls. Polymorphisms were analyzed from blood DNA. Soluble HLA-G (sHLA-G) was measured by ELISA in plasma of the subjects and the tissue expression by immunohistochemistry on patient's tissue.Results: Higher levels of sHLA-G were observed in grade IV gliomas patients than in controls (p < 0.0001). In grade IV patients, the heterozygous 14pb In/Del, +3142 C/G genotypes and Del/C*In/G haplotype were associated with higher sHLA-G levels (p < 0.0001) when compared with controls. GBM patients were stratified into high and low sHLA-G expression and an association was found between +3142 C allele and high sHLA-G plasmatic levels (p = 0.0095). Tissue HLA-G immunolabel was higher in high-grade than low-grade gliomas (p = 0.0033).Conclusion: This was the first study evaluating HLA-G 3' UTR polymorphisms and expression in patients with gliomas. The 14 bp In/Del and +3142 C/G genotypes and haplotypes showed high influence over sHLA-G expression, suggesting a heterozygous advantage in the tumor context and may contribute to a worse prognosis in glioma patients.