Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Science ; : eadp7114, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116259

RESUMO

Endoplasmic Reticulum (ER) stress induces repression of protein synthesis throughout the cell. Attempts to understand how localized stress leads to widespread repression have been limited by difficulties in resolving translation rates at the subcellular level. Here, using live-cell imaging of reporter mRNA translation, we unexpectedly found that during ER stress active translation at mitochondria was significantly protected. The mitochondrial protein, ATAD3A, interacted with PERK and mediated this effect on localized translation by competing for binding with PERK's target, eIF2. PERK-ATAD3A interactions increased during ER stress, forming mitochondria-ER contact sites. Furthermore, ATAD3A binding attenuated local PERK signaling and rescued the expression of some mitochondrial proteins. Thus, PERK-ATAD3A interactions can control translational repression at a subcellular level, mitigating the impact of ER stress on the cell.

2.
Cell ; 187(11): 2601-2627, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38788685

RESUMO

Mitochondria reside at the crossroads of catabolic and anabolic metabolism-the essence of life. How their structure and function are dynamically tuned in response to tissue-specific needs for energy, growth repair, and renewal is being increasingly understood. Mitochondria respond to intrinsic and extrinsic stresses and can alter cell and organismal function by inducing metabolic signaling within cells and to distal cells and tissues. Here, we review how the centrality of mitochondrial functions manifests in health and a broad spectrum of diseases and aging.


Assuntos
Mitocôndrias , Humanos , Mitocôndrias/metabolismo , Animais , Envelhecimento/metabolismo , Transdução de Sinais , Metabolismo Energético
3.
J Cell Biol ; 220(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34586346

RESUMO

Mitochondrial function is integrated with cellular status through the regulation of opposing mitochondrial fusion and division events. Here we uncover a link between mitochondrial dynamics and lipid metabolism by examining the cellular role of mitochondrial carrier homologue 2 (MTCH2). MTCH2 is a modified outer mitochondrial membrane carrier protein implicated in intrinsic cell death and in the in vivo regulation of fatty acid metabolism. Our data indicate that MTCH2 is a selective effector of starvation-induced mitochondrial hyperfusion, a cytoprotective response to nutrient deprivation. We find that MTCH2 stimulates mitochondrial fusion in a manner dependent on the bioactive lipogenesis intermediate lysophosphatidic acid. We propose that MTCH2 monitors flux through the lipogenesis pathway and transmits this information to the mitochondrial fusion machinery to promote mitochondrial elongation, enhanced energy production, and cellular survival under homeostatic and starvation conditions. These findings will help resolve the roles of MTCH2 and mitochondria in tissue-specific lipid metabolism in animals.


Assuntos
Proteínas de Transporte/metabolismo , Lipogênese/fisiologia , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Animais , Apoptose/fisiologia , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HCT116 , Humanos , Metabolismo dos Lipídeos/fisiologia , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo
4.
Elife ; 102021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34034859

RESUMO

Dysfunction of the mitochondrial electron transport chain (mETC) is a major cause of human mitochondrial diseases. To identify determinants of mETC function, we screened a genome-wide human CRISPRi library under oxidative metabolic conditions with selective inhibition of mitochondrial Complex III and identified ovarian carcinoma immunoreactive antigen (OCIA) domain-containing protein 1 (OCIAD1) as a Complex III assembly factor. We find that OCIAD1 is an inner mitochondrial membrane protein that forms a complex with supramolecular prohibitin assemblies. Our data indicate that OCIAD1 is required for maintenance of normal steady-state levels of Complex III and the proteolytic processing of the catalytic subunit cytochrome c1 (CYC1). In OCIAD1 depleted mitochondria, unprocessed CYC1 is hemylated and incorporated into Complex III. We propose that OCIAD1 acts as an adaptor within prohibitin assemblies to stabilize and/or chaperone CYC1 and to facilitate its proteolytic processing by the IMMP2L protease.


Assuntos
Sistemas CRISPR-Cas , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Proteínas de Neoplasias/metabolismo , Proteínas Repressoras/metabolismo , Antimicina A/farmacologia , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/genética , Endopeptidases/genética , Endopeptidases/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Células K562 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Proteínas de Neoplasias/genética , Fosforilação Oxidativa , Proibitinas , Proteólise , Proteínas Repressoras/genética
5.
Nat Commun ; 11(1): 3645, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686675

RESUMO

Endosomes are compositionally dynamic organelles that regulate signaling, nutrient status and organelle quality by specifying whether material entering the cells will be shuttled back to the cell surface or degraded by the lysosome. Recently, membrane contact sites (MCSs) between the endoplasmic reticulum (ER) and endosomes have emerged as important players in endosomal protein sorting, dynamics and motility. Here, we show that PDZD8, a Synaptotagmin-like Mitochondrial lipid-binding Proteins (SMP) domain-containing ER transmembrane protein, utilizes distinct domains to interact with Rab7-GTP and the ER transmembrane protein Protrudin and together these components localize to an ER-late endosome MCS. At these ER-late endosome MCSs, mitochondria are also recruited to form a three-way contact. Thus, our data indicate that PDZD8 is a shared component of two distinct MCSs and suggest a role for SMP-mediated lipid transport in the regulation of endosome function.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Mitocôndrias/metabolismo , Transporte Biológico , Linhagem Celular , Humanos , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Transporte Proteico , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
6.
Proc Natl Acad Sci U S A ; 117(8): 4061-4070, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32041880

RESUMO

The fusion of inner mitochondrial membranes requires dynamin-like GTPases, Mgm1 in yeast and OPA1 in mammals, but how they mediate membrane fusion is poorly understood. Here, we determined the crystal structure of Saccharomyces cerevisiae short Mgm1 (s-Mgm1) in complex with GDP. It revealed an N-terminal GTPase (G) domain followed by two helix bundles (HB1 and HB2) and a unique C-terminal lipid-interacting stalk (LIS). Dimers can form through antiparallel HB interactions. Head-to-tail trimers are built by intermolecular interactions between the G domain and HB2-LIS. Biochemical and in vivo analyses support the idea that the assembly interfaces observed here are native and critical for Mgm1 function. We also found that s-Mgm1 interacts with negatively charged lipids via both the G domain and LIS. Based on these observations, we propose that membrane targeting via the G domain and LIS facilitates the in cis assembly of Mgm1, potentially generating a highly curved membrane tip to allow inner membrane fusion.


Assuntos
Cristalografia por Raios X , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Guanosina Difosfato/química , Mitocôndrias/enzimologia , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ligação ao GTP/genética , Guanosina Difosfato/metabolismo , Metabolismo dos Lipídeos , Fusão de Membrana , Proteínas Mitocondriais/genética , Modelos Moleculares , Mutação , Conformação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
J Cell Biol ; 218(4): 1353-1369, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30674579

RESUMO

Coenzyme Q (CoQ) lipids are ancient electron carriers that, in eukaryotes, function in the mitochondrial respiratory chain. In mitochondria, CoQ lipids are built by an inner membrane-associated, multicomponent, biosynthetic pathway via successive steps of isoprenyl tail polymerization, 4-hydroxybenzoate head-to-tail attachment, and head modification, resulting in the production of CoQ. In yeast, we discovered that head-modifying CoQ pathway components selectively colocalize to multiple resolvable domains in vivo, representing supramolecular assemblies. In cells engineered with conditional ON or OFF CoQ pathways, domains were strictly correlated with CoQ production and substrate flux, respectively, indicating that CoQ lipid intermediates are required for domain formation. Mitochondrial CoQ domains were also observed in human cells, underscoring their conserved functional importance. CoQ domains within cells were highly enriched adjacent to ER-mitochondria contact sites. Together, our data suggest that CoQ domains function to facilitate substrate accessibility for processive and efficient CoQ production and distribution in cells.


Assuntos
Retículo Endoplasmático/enzimologia , Enzimas/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Ubiquinona/biossíntese , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Enzimas/genética , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Complexos Multienzimáticos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Ubiquinona/genética , Ubiquinona/metabolismo
8.
EMBO J ; 37(6)2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29467216

RESUMO

Lipid transport proteins at membrane contact sites, where two organelles are closely apposed, play key roles in trafficking lipids between cellular compartments while distinct membrane compositions for each organelle are maintained. Understanding the mechanisms underlying non-vesicular lipid trafficking requires characterization of the lipid transporters residing at contact sites. Here, we show that the mammalian proteins in the lipid transfer proteins anchored at a membrane contact site (LAM) family, called GRAMD1a-c, transfer sterols with similar efficiency as the yeast orthologues, which have known roles in sterol transport. Moreover, we have determined the structure of a lipid transfer domain of the yeast LAM protein Ysp2p, both in its apo-bound and sterol-bound forms, at 2.0 Å resolution. It folds into a truncated version of the steroidogenic acute regulatory protein-related lipid transfer (StART) domain, resembling a lidded cup in overall shape. Ergosterol binds within the cup, with its 3-hydroxy group interacting with protein indirectly via a water network at the cup bottom. This ligand binding mode likely is conserved for the other LAM proteins and for StART domains transferring sterols.


Assuntos
Proteínas de Transporte/metabolismo , Esteróis/metabolismo , Metabolismo dos Lipídeos , Domínios Proteicos
9.
Elife ; 72018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29469807

RESUMO

Endoplasmic reticulum (ER) membrane contact sites (MCSs) are crucial regulatory hubs in cells, playing roles in signaling, organelle dynamics, and ion and lipid homeostasis. Previous work demonstrated that the highly conserved yeast Ltc/Lam sterol transporters localize and function at ER MCSs. Our analysis of the human family members, GRAMD1a and GRAMD2a, demonstrates that they are ER-PM MCS proteins, which mark separate regions of the plasma membrane (PM) and perform distinct functions in vivo. GRAMD2a, but not GRAMD1a, co-localizes with the E-Syt2/3 tethers at ER-PM contacts in a PIP lipid-dependent manner and pre-marks the subset of PI(4,5)P2-enriched ER-PM MCSs utilized for STIM1 recruitment. Data from an analysis of cells lacking GRAMD2a suggest that it is an organizer of ER-PM MCSs with pleiotropic functions including calcium homeostasis. Thus, our data demonstrate the existence of multiple ER-PM domains in human cells that are functionally specialized by GRAM-domain containing proteins.


Assuntos
Membrana Celular/enzimologia , Retículo Endoplasmático/enzimologia , Proteínas de Membrana/análise , Animais , Cálcio/metabolismo , Linhagem Celular , Homeostase , Humanos , Proteínas de Neoplasias/análise , Fosfatos de Fosfatidilinositol/análise , Molécula 1 de Interação Estromal/análise , Sinaptotagminas/análise
10.
Science ; 359(6376): 689-692, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29348368

RESUMO

The signal recognition particle (SRP) enables cotranslational delivery of proteins for translocation into the endoplasmic reticulum (ER), but its full in vivo role remains incompletely explored. We combined rapid auxin-induced SRP degradation with proximity-specific ribosome profiling to define SRP's in vivo function in yeast. Despite the classic view that SRP recognizes amino-terminal signal sequences, we show that SRP was generally essential for targeting transmembrane domains regardless of their position relative to the amino terminus. By contrast, many proteins containing cleavable amino-terminal signal peptides were efficiently cotranslationally targeted in SRP's absence. We also reveal an unanticipated consequence of SRP loss: Transcripts normally targeted to the ER were mistargeted to mitochondria, leading to mitochondrial defects. These results elucidate SRP's essential roles in maintaining the efficiency and specificity of protein targeting.


Assuntos
Sinais Direcionadores de Proteínas , Saccharomyces cerevisiae/metabolismo , Partícula de Reconhecimento de Sinal/metabolismo , Retículo Endoplasmático/metabolismo , Ácidos Indolacéticos/farmacologia , Mitocôndrias/metabolismo , Transporte Proteico , Proteólise/efeitos dos fármacos , RNA Mensageiro/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos
11.
Dev Cell ; 44(2): 261-270.e6, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29290583

RESUMO

Spatial organization of phospholipid synthesis in eukaryotes is critical for cellular homeostasis. The synthesis of phosphatidylcholine (PC), the most abundant cellular phospholipid, occurs redundantly via the ER-localized Kennedy pathway and a pathway that traverses the ER and mitochondria via membrane contact sites. The basis of the ER-mitochondrial PC synthesis pathway is the exclusive mitochondrial localization of a key pathway enzyme, phosphatidylserine decarboxylase Psd1, which generates phosphatidylethanolamine (PE). We find that Psd1 is localized to both mitochondria and the ER. Our data indicate that Psd1-dependent PE made at mitochondria and the ER has separable cellular functions. In addition, the relative organellar localization of Psd1 is dynamically modulated based on metabolic needs. These data reveal a critical role for ER-localized Psd1 in cellular phospholipid homeostasis, question the significance of an ER-mitochondrial PC synthesis pathway to cellular phospholipid homeostasis, and establish the importance of fine spatial regulation of lipid biosynthesis for cellular functions.


Assuntos
Carboxiliases/metabolismo , Retículo Endoplasmático/enzimologia , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Fosfatidiletanolaminas/metabolismo , Carboxiliases/química , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Homeostase , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Sinais Direcionadores de Proteínas
12.
J Cell Biol ; 216(12): 3885, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29187613
13.
J Cell Biol ; 216(9): 2679-2689, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28774891

RESUMO

Membrane contact sites (MCSs) function to facilitate the formation of membrane domains composed of specialized lipids, proteins, and nucleic acids. In cells, membrane domains regulate membrane dynamics and biochemical and signaling pathways. We and others identified a highly conserved family of sterol transport proteins (Ltc/Lam) localized at diverse MCSs. In this study, we describe data indicating that the yeast family members Ltc1 and Ltc3/4 function at the vacuole and plasma membrane, respectively, to create membrane domains that partition upstream regulators of the TORC1 and TORC2 signaling pathways to coordinate cellular stress responses with sterol homeostasis.


Assuntos
Antiporters/metabolismo , Microdomínios da Membrana/enzimologia , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Esteróis/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Antiporters/genética , Transporte Biológico , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto , Retículo Endoplasmático/enzimologia , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Fatores de Transcrição/genética , Vacúolos/enzimologia
14.
Eur J Hum Genet ; 24(12): 1778-1782, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27485409

RESUMO

The mitochondrial inner membrane possesses distinct subdomains including cristae, which are lamellar structures invaginated into the mitochondrial matrix and contain the respiratory complexes. Generation of inner membrane domains requires the complex interplay between the respiratory complexes, mitochondrial lipids and the recently identified mitochondrial contact site and cristae organizing system (MICOS) complex. Proper organization of the mitochondrial inner membrane has recently been shown to be important for respiratory function in yeast. Here we aimed at a molecular diagnosis in a brother and sister from a consanguineous family who presented with a neurodegenerative disorder accompanied by hyperlactatemia, 3-methylglutaconic aciduria, disturbed hepatocellular function with abnormal cristae morphology in liver and cerebellar and vermis atrophy, which suggest mitochondrial dysfunction. Using homozygosity mapping and exome sequencing the patients were found to be homozygous for the p.(Gly15Glufs*75) variant in the QIL1/MIC13 (C19orf70) gene. QIL1/MIC13 is a constituent of MICOS, a six subunit complex that helps to form and/or stabilize cristae junctions and determine the placement, distribution and number of cristae within mitochondria. In patient fibroblasts both MICOS subunits QIL1/MIC13 and MIC10 were absent whereas MIC60 was present in a comparable abundance to that of the control. We conclude that QIL1/MIC13 deficiency in human, is associated with disassembly of the MICOS complex, with the associated aberration of cristae morphology and mitochondrial respiratory dysfunction. 3-Methylglutaconic aciduria is associated with variants in genes encoding mitochondrial inner membrane organizing determinants, including TAZ, DNAJC19, SERAC1 and QIL1/MIC13.


Assuntos
Encefalopatias/genética , Hepatopatias/genética , Doenças Mitocondriais/genética , Proteínas Mitocondriais/genética , Encefalopatias/diagnóstico , Células Cultivadas , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Lactente , Hepatopatias/diagnóstico , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Doenças Mitocondriais/diagnóstico , Fases de Leitura Aberta , Síndrome
15.
Science ; 353(6296): aaf5549, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27418514

RESUMO

Mitochondrial DNA (mtDNA) encodes RNAs and proteins critical for cell function. In human cells, hundreds to thousands of mtDNA copies are replicated asynchronously, packaged into protein-DNA nucleoids, and distributed within a dynamic mitochondrial network. The mechanisms that govern how nucleoids are chosen for replication and distribution are not understood. Mitochondrial distribution depends on division, which occurs at endoplasmic reticulum (ER)-mitochondria contact sites. These sites were spatially linked to a subset of nucleoids selectively marked by mtDNA polymerase and engaged in mtDNA synthesis--events that occurred upstream of mitochondrial constriction and division machine assembly. Our data suggest that ER tubules proximal to nucleoids are necessary but not sufficient for mtDNA synthesis. Thus, ER-mitochondria contacts coordinate licensing of mtDNA synthesis with division to distribute newly replicated nucleoids to daughter mitochondria.


Assuntos
Replicação do DNA , DNA Mitocondrial/biossíntese , Retículo Endoplasmático/fisiologia , Mitocôndrias/fisiologia , Dinâmica Mitocondrial , Animais , Células COS , Linhagem Celular Tumoral , Chlorocebus aethiops , DNA Polimerase Dirigida por DNA/metabolismo , Retículo Endoplasmático/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Proteínas Recombinantes/metabolismo
16.
J Cell Biol ; 213(5): 525-34, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27241913

RESUMO

Mitochondria exert critical functions in cellular lipid metabolism and promote the synthesis of major constituents of cellular membranes, such as phosphatidylethanolamine (PE) and phosphatidylcholine. Here, we demonstrate that the phosphatidylserine decarboxylase Psd1, located in the inner mitochondrial membrane, promotes mitochondrial PE synthesis via two pathways. First, Ups2-Mdm35 complexes (SLMO2-TRIAP1 in humans) serve as phosphatidylserine (PS)-specific lipid transfer proteins in the mitochondrial intermembrane space, allowing formation of PE by Psd1 in the inner membrane. Second, Psd1 decarboxylates PS in the outer membrane in trans, independently of PS transfer by Ups2-Mdm35. This latter pathway requires close apposition between both mitochondrial membranes and the mitochondrial contact site and cristae organizing system (MICOS). In MICOS-deficient cells, limiting PS transfer by Ups2-Mdm35 and reducing mitochondrial PE accumulation preserves mitochondrial respiration and cristae formation. These results link mitochondrial PE metabolism to MICOS, combining functions in protein and lipid homeostasis to preserve mitochondrial structure and function.


Assuntos
Lipídeos de Membrana/biossíntese , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Fosfolipídeos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Deleção de Genes , Membranas Mitocondriais/ultraestrutura , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas , Fosfatidilserinas/metabolismo , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestrutura
18.
Mol Cell ; 61(5): 648-653, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26942669

RESUMO

Membrane contact sites between mitochondria and other organelles are important for lipid and ion exchange, membrane dynamics, and signaling. Recent advances are revealing their molecular features and how different types of mitochondria contacts are coordinated with each other for cell function.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Transdução de Sinais , Animais , Comunicação Celular , Homeostase , Humanos , Metabolismo dos Lipídeos , Dinâmica Mitocondrial , Modelos Biológicos
19.
Sci Rep ; 5: 18344, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26669658

RESUMO

Membrane homeostasis affects mitochondrial dynamics, morphology, and function. Here we report genetic and proteomic data that reveal multiple interactions of Mdm33, a protein essential for normal mitochondrial structure, with components of phospholipid metabolism and mitochondrial inner membrane homeostasis. We screened for suppressors of MDM33 overexpression-induced growth arrest and isolated binding partners by immunoprecipitation of cross-linked cell extracts. These approaches revealed genetic and proteomic interactions of Mdm33 with prohibitins, Phb1 and Phb2, which are key components of mitochondrial inner membrane homeostasis. Lipid profiling by mass spectrometry of mitochondria isolated from Mdm33-overexpressing cells revealed that high levels of Mdm33 affect the levels of phosphatidylethanolamine and cardiolipin, the two key inner membrane phospholipids. Furthermore, we show that cells lacking Mdm33 show strongly decreased mitochondrial fission activity indicating that Mdm33 is critical for mitochondrial membrane dynamics. Our data suggest that MDM33 functionally interacts with components important for inner membrane homeostasis and thereby supports mitochondrial division.


Assuntos
Proteínas de Membrana/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Biogênese de Organelas , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Membrana/genética , Proteínas Mitocondriais/genética , Proibitinas , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
20.
J Cell Biol ; 209(4): 539-48, 2015 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-25987606

RESUMO

Organelle contact sites perform fundamental functions in cells, including lipid and ion homeostasis, membrane dynamics, and signaling. Using a forward proteomics approach in yeast, we identified new ER-mitochondria and ER-vacuole contacts specified by an uncharacterized protein, Ylr072w. Ylr072w is a conserved protein with GRAM and VASt domains that selectively transports sterols and is thus termed Ltc1, for Lipid transfer at contact site 1. Ltc1 localized to ER-mitochondria and ER-vacuole contacts via the mitochondrial import receptors Tom70/71 and the vacuolar protein Vac8, respectively. At mitochondria, Ltc1 was required for cell viability in the absence of Mdm34, a subunit of the ER-mitochondria encounter structure. At vacuoles, Ltc1 was required for sterol-enriched membrane domain formation in response to stress. Increasing the proportion of Ltc1 at vacuoles was sufficient to induce sterol-enriched vacuolar domains without stress. Thus, our data support a model in which Ltc1 is a sterol-dependent regulator of organelle and cellular homeostasis via its dual localization to ER-mitochondria and ER-vacuole contact sites.


Assuntos
Antiporters/fisiologia , Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Ergosterol/metabolismo , Membranas Intracelulares/metabolismo , Transporte Proteico , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 2 , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA