Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39142913

RESUMO

As a result of a long evolutionary history, serotonin plays a variety of physiological roles, including neurological, cardiovascular, gastrointestinal, and endocrine functions. While many of these activities can be accommodated within the serotoninergic activity, recent findings have revealed an unsuspected role of serotonin in orchestrating host and microbial dialogue at the tryptophan dining table, to the benefit of local and systemic homeostasis. Herein we review the dual role of serotonin at the host-microbe interface and discuss how unraveling the interconnections among the host and microbial pathways of tryptophan degradation may help to accommodate the versatility of serotonin in physiology and pathology.

3.
Sci Rep ; 14(1): 6651, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509264

RESUMO

Multiple sclerosis is a debilitating autoimmune disease, characterized by chronic inflammation of the central nervous system. While the significance of the gut microbiome on multiple sclerosis pathogenesis is established, the underlining mechanisms are unknown. We found that serum levels of the microbial postbiotic tryptophan metabolite indole-3-carboxaldehyde (3-IAld) inversely correlated with disease duration in multiple sclerosis patients. Much like the host-derived tryptophan derivative L-Kynurenine, 3-IAld would bind and activate the Aryl hydrocarbon Receptor (AhR), which, in turn, controls endogenous tryptophan catabolic pathways. As a result, in peripheral lymph nodes, microbial 3-IAld, affected mast-cell tryptophan metabolism, forcing mast cells to produce serotonin via Tph1. We thus propose a protective role for AhR-mast-cell activation driven by the microbiome, whereby natural metabolites or postbiotics will have a physiological role in immune homeostasis and may act as therapeutic targets in autoimmune diseases.


Assuntos
Esclerose Múltipla , Triptofano , Humanos , Cinurenina/metabolismo , Ligantes , Receptores de Hidrocarboneto Arílico/metabolismo , Triptofano/metabolismo , Triptofano Hidroxilase/metabolismo
4.
Front Biosci (Landmark Ed) ; 29(2): 59, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38420819

RESUMO

BACKGROUND: The recent Coronavirus Disease 2019 (COVID-19) pandemic has dramatically exposed our gap in understanding the pathogenesis of airborne infections. Within such a context, it is increasingly clear that the nasal cavity represents a critical checkpoint not only in the initial colonization phase but also in shaping any infectious sequelae. This is particularly relevant to COVID-19 in that the nasal cavity is characterized by high-level expression of the Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2) receptor, Angiotensin-Converting Enzyme 2 (ACE2), all along the respiratory tract. As part of the nasal mucosa, commensal microbes harbored by the nasal cavity likely are far more than just innocent bystanders in the interaction between SARS-CoV-2 and the local microenvironment. Yet the role of the qualitative composition of the nasal microbiome is unclear, as is its function, whether protective or not. METHODS: In this study, individuals undergoing SARS-CoV-2 molecular testing at the Hospital of Perugia (Italy) were recruited, with their residual material from the nasopharyngeal swabs being collected for microbiome composition analysis and short-chain fatty acid (SCFA) measurements (by 16S rRNA sequencing and gas chromatography-mass spectrometry), respectively. RESULTS: After stratification by age, gender, and viral load, the composition of the nasopharyngeal microbiome appeared to be influenced by age and gender, and SARS-CoV-2 infection further determined compositional changes. Notwithstanding this variability, a restricted analysis of female subjects-once SARS-CoV-2-infected-unraveled a shared expansion of Lachnospirales-Lachnospiraceae, irrespective of the viral load and age. This was associated with a reduction in the branched SCFA isobutanoic acid, as well as in the SCFAs with longer chains. CONCLUSIONS: Our results indicate that the nasopharyngeal microbiome is influenced by age, gender, and viral load, with consistent patterns of microbiome changes being present across specific groups. This may help in designing a personalized medicine approach in COVID-19 patients with specific patterns of nasal microbial communities.


Assuntos
COVID-19 , Microbiota , Humanos , Feminino , SARS-CoV-2 , RNA Ribossômico 16S/genética , Nasofaringe
5.
Blood ; 143(16): 1628-1645, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38227935

RESUMO

ABSTRACT: CPX-351, a liposomal combination of cytarabine plus daunorubicin, has been approved for the treatment of adults with newly diagnosed, therapy-related acute myeloid leukemia (AML) or AML with myelodysplasia-related changes, because it improves survival and outcome of patients who received hematopoietic stem cell transplant compared with the continuous infusion of cytarabine plus daunorubicin (referred to as "7 + 3" combination). Because gut dysbiosis occurring in patients with AML during induction chemotherapy heavily affects the subsequent phases of therapy, we have assessed whether the superior activity of CPX-351 vs "7 + 3" combination in the real-life setting implicates an action on and by the intestinal microbiota. To this purpose, we have evaluated the impact of CPX-351 and "7 + 3" combination on mucosal barrier function, gut microbial composition and function, and antifungal colonization resistance in preclinical models of intestinal damage in vitro and in vivo and fecal microbiota transplantation. We found that CPX-351, at variance with "7 + 3" combination, protected from gut dysbiosis, mucosal damage, and gut morbidity while increasing antifungal resistance. Mechanistically, the protective effect of CPX-351 occurred through pathways involving both the host and the intestinal microbiota, namely via the activation of the aryl hydrocarbon receptor-interleukin-22 (IL-22)-IL-10 host pathway and the production of immunomodulatory metabolites by anaerobes. This study reveals how the gut microbiota may contribute to the good safety profile, with a low infection-related mortality, of CPX-351 and highlights how a better understanding of the host-microbiota dialogue may contribute to pave the way for precision medicine in AML.


Assuntos
Microbioma Gastrointestinal , Leucemia Mieloide Aguda , Adulto , Humanos , Antifúngicos/uso terapêutico , Disbiose/etiologia , Daunorrubicina , Leucemia Mieloide Aguda/tratamento farmacológico , Citarabina , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Homeostase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA