Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Robot AI ; 10: 1291839, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37849646
2.
Soft Robot ; 10(2): 365-379, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36301203

RESUMO

Robots primarily made of soft and elastic materials have potential applications such as traveling in confined spaces due to their adaptive morphology. However, their energy efficiency is still subject to improvement. Although a possible approach to increase efficiency is by harvesting the energy used during their behavioral motion, it is not trivial to do so due to their complex dynamics. This work seeks to pioneer a study that exploits the tight coupling between a robot's adaptive morphology, control, and consequent behaviors to harvest energy and increase energy efficiency. It is hypothesized that since varying the robot's morphology may change the energy use that leads to contrasting behavior and efficiency, harvesting the robot's energy will need to be adapted to its morphology. To verify the hypothesis, we developed a shape-changing robot with an elastic structure that achieves locomotion via vibration controlled by a single motor, such that the complex dynamics of the robot can be characterized through its resonance frequencies. It will be shown that harvesting energy at opportune occasions is more important than maximizing the harvest capacity to increase energy efficiency. We will also show how the robot's shape affects energy use in locomotion and how energy harvesting will feedback additional energy that increases the magnitude and affects the robot's behavior. We conclude with an understanding of the role of the robot's morphology, that is, shape, in using the energy provided to the robot and how the understanding can be used to harvest the robot's energy to increase its efficiency.

3.
Artif Life ; 28(3): 348-368, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35881682

RESUMO

Bacterial chemotaxis in unicellular Escherichia coli, the simplest biological creature, enables it to perform effective searching behaviour even with a single sensor, achieved via a sequence of "tumbling" and "swimming" behaviours guided by gradient information. Recent studies show that suitable random walk strategies may guide the behaviour in the absence of gradient information. This article presents a novel and minimalistic biologically inspired search strategy inspired by bacterial chemotaxis and embodied intelligence concept: a concept stating that intelligent behaviour is a result of the interaction among the "brain," body morphology including the sensory sensitivity tuned by the morphology, and the environment. Specifically, we present bacterial chemotaxis inspired searching behaviour with and without gradient information based on biological fluctuation framework: a mathematical framework that explains how biological creatures utilize noises in their behaviour. Via extensive simulation of a single sensor mobile robot that searches for a moving target, we will demonstrate how the effectiveness of the search depends on the sensory sensitivity and the inherent random walk strategies produced by the brain of the robot, comprising Ballistic, Levy, Brownian, and Stationary search. The result demonstrates the importance of embodied intelligence even in a behaviour inspired by the simplest creature.


Assuntos
Escherichia coli , Inteligência , Simulação por Computador , Modelos Biológicos
4.
Biomimetics (Basel) ; 3(3)2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31105239

RESUMO

Soft robotics is a branch of robotics that deals with mechatronics and electromechanical systems primarily made of soft materials. This paper presents a summary of a chronicle study of various soft robotic hand exoskeletons, with different electroencephalography (EEG)- and electromyography (EMG)-based instrumentations and controls, for rehabilitation and assistance in activities of daily living. A total of 45 soft robotic hand exoskeletons are reviewed. The study follows two methodological frameworks: a systematic review and a chronological review of the exoskeletons. The first approach summarizes the designs of different soft robotic hand exoskeletons based on their mechanical, electrical and functional attributes, including the degree of freedom, number of fingers, force transmission, actuation mode and control strategy. The second approach discusses the technological trend of soft robotic hand exoskeletons in the past decade. The timeline analysis demonstrates the transformation of the exoskeletons from rigid ferrous materials to soft elastomeric materials. It uncovers recent research, development and integration of their mechanical and electrical components. It also approximates the future of the soft robotic hand exoskeletons and some of their crucial design attributes.

5.
Interface Focus ; 6(4): 20160016, 2016 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-27499843

RESUMO

Sensor morphology, the morphology of a sensing mechanism which plays a role of shaping the desired response from physical stimuli from surroundings to generate signals usable as sensory information, is one of the key common aspects of sensing processes. This paper presents a structured review of researches on bioinspired sensor morphology implemented in robotic systems, and discusses the fundamental design principles. Based on literature review, we propose two key arguments: first, owing to its synthetic nature, biologically inspired robotics approach is a unique and powerful methodology to understand the role of sensor morphology and how it can evolve and adapt to its task and environment. Second, a consideration of an integrative view of perception by looking into multidisciplinary and overarching mechanisms of sensor morphology adaptation across biology and engineering enables us to extract relevant design principles that are important to extend our understanding of the unfinished concepts in sensing and perception.

6.
Sensors (Basel) ; 14(7): 12748-70, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-25036332

RESUMO

Soft material structures exhibit high deformability and conformability which can be useful for many engineering applications such as robots adapting to unstructured and dynamic environments. However, the fact that they have almost infinite degrees of freedom challenges conventional sensory systems and sensorization approaches due to the difficulties in adapting to soft structure deformations. In this paper, we address this challenge by proposing a novel method which designs flexible sensor morphologies to sense soft material deformations by using a functional material called conductive thermoplastic elastomer (CTPE). This model-based design method, called Strain Vector Aided Sensorization of Soft Structures (SVAS3), provides a simulation platform which analyzes soft body deformations and automatically finds suitable locations for CTPE-based strain gauge sensors to gather strain information which best characterizes the deformation. Our chosen sensor material CTPE exhibits a set of unique behaviors in terms of strain length electrical conductivity, elasticity, and shape adaptability, allowing us to flexibly design sensor morphology that can best capture strain distributions in a given soft structure. We evaluate the performance of our approach by both simulated and real-world experiments and discuss the potential and limitations.


Assuntos
Engenharia/métodos , Teste de Materiais/métodos , Simulação por Computador , Elasticidade , Condutividade Elétrica
7.
PLoS One ; 8(12): e84090, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24416094

RESUMO

BACKGROUND: Despite the widespread use of sensors in engineering systems like robots and automation systems, the common paradigm is to have fixed sensor morphology tailored to fulfill a specific application. On the other hand, robotic systems are expected to operate in ever more uncertain environments. In order to cope with the challenge, it is worthy of note that biological systems show the importance of suitable sensor morphology and active sensing capability to handle different kinds of sensing tasks with particular requirements. METHODOLOGY: This paper presents a robotics active sensing system which is able to adjust its sensor morphology in situ in order to sense different physical quantities with desirable sensing characteristics. The approach taken is to use thermoplastic adhesive material, i.e. Hot Melt Adhesive (HMA). It will be shown that the thermoplastic and thermoadhesive nature of HMA enables the system to repeatedly fabricate, attach and detach mechanical structures with a variety of shape and size to the robot end effector for sensing purposes. Via active sensing capability, the robotic system utilizes the structure to physically probe an unknown target object with suitable motion and transduce the arising physical stimuli into information usable by a camera as its only built-in sensor. CONCLUSIONS/SIGNIFICANCE: The efficacy of the proposed system is verified based on two results. Firstly, it is confirmed that suitable sensor morphology and active sensing capability enables the system to sense different physical quantities, i.e. softness and temperature, with desirable sensing characteristics. Secondly, given tasks of discriminating two visually indistinguishable objects with respect to softness and temperature, it is confirmed that the proposed robotic system is able to autonomously accomplish them. The way the results motivate new research directions which focus on in situ adjustment of sensor morphology will also be discussed.


Assuntos
Engenharia/métodos , Retroalimentação Sensorial , Robótica/métodos , Sensação , Adesivos/química , Computadores , Software , Temperatura
8.
PLoS One ; 6(2): e16168, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21304911

RESUMO

BACKGROUND: Theoretical studies predict that Lévy walks maximizes the chance of encountering randomly distributed targets with a low density, but Brownian walks is favorable inside a patch of targets with high density. Recently, experimental data reports that some animals indeed show a Lévy and Brownian walk movement patterns when forage for foods in areas with low and high density. This paper presents a simple, Gaussian-noise utilizing computational model that can realize such behavior. METHODOLOGY/PRINCIPAL FINDINGS: We extend Lévy walks model of one of the simplest creature, Escherichia coli, based on biological fluctuation framework. We build a simulation of a simple, generic animal to observe whether Lévy or Brownian walks will be performed properly depends on the target density, and investigate the emergent behavior in a commonly faced patchy environment where the density alternates. CONCLUSIONS/SIGNIFICANCE: Based on the model, animal behavior of choosing Lévy or Brownian walk movement patterns based on the target density is able to be generated, without changing the essence of the stochastic property in Escherichia coli physiological mechanism as explained by related researches. The emergent behavior and its benefits in a patchy environment are also discussed. The model provides a framework for further investigation on the role of internal noise in realizing adaptive and efficient foraging behavior.


Assuntos
Comportamento Animal/fisiologia , Simulação por Computador , Modelos Biológicos , Adaptação Biológica/fisiologia , Animais , Fatores Quimiotáticos/farmacologia , Ecossistema , Modificador do Efeito Epidemiológico , Meio Ambiente , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Comportamento Alimentar/fisiologia , Alimentos , Cadeia Alimentar , Movimento/efeitos dos fármacos , Movimento/fisiologia , Comportamento Predatório/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA