Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Evol ; 13(5): e10141, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37250450

RESUMO

Omnivores utilize dietary sources which differ in nutrients, hence dietary limitations due to environmental change or habitat alteration could cause nutrient limitations, and thus deterioration of body condition if omnivory is obligate. We investigated how the body condition of the omnivorous Village weaver Ploceus cucullatus (weavers), which forages predominantly on grains, responds to the supplementation of its grain diet with insects instead of fruits. Forty wild-caught weavers held in aviaries were fed a combination of grains and fruits, or grains and insects ad libitum for 8 weeks. We determined diet preference by recording the number of birds on each diet option per minute for 1 h and the amount of food left-over after 3 h of foraging. Fortnightly, we assessed indices of body condition including body mass, pectoral muscle, and fat scores, packed cell volume (PCV), and hemoglobin concentration (HBC). We modeled the number of foragers, food left-over, and body condition indices as functions of diet, while accounting for time (weeks) and sex effects. Grains were the preferred diet, but males ate more fruits and insects than females. Weavers fed on grains and fruits lost body and pectoral muscle mass and accumulated less fat than those fed on grains and insects. This effect was sex-dependent: females supplemented with fruits lost more pectoral muscle mass than males of the same group and males but not females, supplemented with insects accumulated more fat reserve than those supplemented with fruits. PCV and HBC did not differ between diets but increased over the 8 weeks. Weavers are likely obligate rather than facultative omnivores, with insects as being a more nutritive supplement than fruits. Nutrient limitation arising from environmental change or habitat alteration could impair body condition and affect physiological function to environmental seasonality in obligate omnivores like the weavers.

2.
Proc Biol Sci ; 290(1990): 20221506, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36598020

RESUMO

Parasites face a trade-off if the highest quality hosts are also most resistant to exploitation. For brood parasites, well-defended host nests may be both harder to parasitize and harder to predate, leading to better survival of parasitic chicks. This trade-off could be accentuated if brood-parasitic adaptations to reduce front-line defences of hosts, such as mimicry of hawks by Cuculus cuckoos, do not deter hosts which aggressively mob raptors. Here we investigate the costs and benefits to the African cuckoo (Cuculus gularis) of specializing on a highly aggressive host species, the fork-tailed drongo (Dicrurus adsimilis). Field experiments showed that drongos strongly attacked and mobbed both cuckoo and hawk models, implying that hawk mimicry does not deter front-line defences against African cuckoos. Attacks on cuckoo and hawk models generally declined after the egg stage but attacks on snake models sharply increased, suggesting drongos may treat hawks more like cuckoos than predators. We suggest that the cost to cuckoos of parasitizing an aggressive host may be alleviated by subsequent benefits to their offspring, since drongo nests survived better than nests of other species with similar nesting ecology. These results are indicative of a trade-off between host quality and susceptibility for a brood parasite.


Assuntos
Falcões , Parasitos , Passeriformes , Animais , Comportamento de Nidação , Galinhas
3.
Conserv Lett ; 15(4): e12886, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36248252

RESUMO

Human-wildlife cooperation occurs when humans and free-living wild animals actively coordinate their behavior to achieve a mutually beneficial outcome. These interactions provide important benefits to both the human and wildlife communities involved, have wider impacts on the local ecosystem, and represent a unique intersection of human and animal cultures. The remaining active forms are human-honeyguide and human-dolphin cooperation, but these are at risk of joining several inactive forms (including human-wolf and human-orca cooperation). Human-wildlife cooperation faces a unique set of conservation challenges, as it requires multiple components-a motivated human and wildlife partner, a suitable environment, and compatible interspecies knowledge-which face threats from ecological and cultural changes. To safeguard human-wildlife cooperation, we recommend: (i) establishing ethically sound conservation strategies together with the participating human communities; (ii) conserving opportunities for human and wildlife participation; (iii) protecting suitable environments; (iv) facilitating cultural transmission of traditional knowledge; (v) accessibly archiving Indigenous and scientific knowledge; and (vi) conducting long-term empirical studies to better understand these interactions and identify threats. Tailored safeguarding plans are therefore necessary to protect these diverse and irreplaceable interactions. Broadly, our review highlights that efforts to conserve biological and cultural diversity should carefully consider interactions between human and animal cultures. Please see AfricanHoneyguides.com/abstract-translations for Kiswahili and Portuguese translations of the abstract.

4.
Sci Rep ; 10(1): 5909, 2020 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-32246110

RESUMO

Geographic variation in aridity determines environmental productivity patterns, including large-scale variability in pathogens, vectors and associated diseases. If disease risk decreases with increasing aridity and is matched by immune defense, we predict a decrease in innate immune function along a gradient of increasing aridity from the cool-wet forest to the hot-dry Sahel, from south to north in Nigeria. We sampled blood and measured five innate immune indices from 286 Common Bulbuls Pycnonotus barbatus between 6 and 13°N. We sampled in the dry season; we resampled the first location (Jos) also as the last sample location to test temporal change in immune function. Immune indices did not decrease with aridity. One immune index, nitric oxide concentration showed a weak quadratic pattern. In Jos, ovotransferrin concentration, haemagglutination and haemolysis titres increased 12 weeks into the dry season, contrary to expectations that immune indices should decrease with increased dryness. In this tropical system, innate immune function does not decrease with increasing aridity but temporal factors within a location may influence immune function more strongly than spatial variation in aridity, suggesting that immune variation does not follow a simple environmental productivity pattern. Consequently, caution should probably be exercised in predicting effects of climate variability on immune function or disease risk.


Assuntos
Imunidade Inata , Passeriformes/imunologia , Chuva , Animais , Clima , Mudança Climática , Conalbumina/sangue , Conalbumina/imunologia , Secas , Feminino , Florestas , Geografia , Hemaglutinação/imunologia , Hemólise/imunologia , Nigéria , Passeriformes/sangue , Análise Espacial
5.
J Anim Ecol ; 89(3): 867-883, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31764994

RESUMO

Diet alteration may lead to nutrient limitations even in the absence of food limitation, and this may affect physiological functions, including immunity. Nutrient limitations may also affect the maintenance of body mass and key life-history events that may affect immune function. Yet, variation in immune function is largely attributed to energetic trade-offs rather than specific nutrient constraints. To test the effect of diet on life-history traits, we tested how diet composition affects innate immune function, body mass and moult separately and in combination with each other, and then used path analyses to generate hypotheses about the mechanistic connections between immunity and body mass under different diet compositions. We performed a balanced parallel and crossover design experiment with omnivorous common bulbuls Pycnonotus barbatus in out-door aviaries in Nigeria. We fed 40 wild-caught bulbuls ad libitum on fruits or invertebrates for 24 weeks, switching half of each group between treatments after 12 weeks. We assessed innate immune indices (haptoglobin, nitric oxide and ovotransferrin concentrations, and haemagglutination and haemolysis titres), body mass and primary moult, fortnightly. We simplified immune indices into three principal components (PCs), but we explored mechanistic connections between diet, body mass and each immune index separately. Fruit-fed bulbuls had higher body mass, earlier moult and showed higher values for two of the three immune PCs compared to invertebrate-fed bulbuls. These effects were reversed when we switched bulbuls between treatments after 12 weeks. Exploring the correlations between immune function, body mass and moult, showed that an increase in immune function was associated with a decrease in body mass and delayed moult in invertebrate-fed bulbuls, while fruit-fed bulbuls maintained body mass despite variation in immune function. Path analyses indicated that diet composition was most likely to affect body mass and immune indices directly and independently from each other. Only haptoglobin concentration was indirectly linked to diet composition via body mass. We demonstrated a causal effect of diet composition on innate immune function, body mass and moult: bulbuls were in a better condition when fed on fruits than invertebrates, confirming that innate immunity is nutrient specific. Our results are unique because they show a reversible effect of diet composition on wild adult birds whose immune systems are presumably fully developed and adapted to wild conditions-demonstrating a short-term consequence of diet alteration on life-history traits.


Assuntos
Aves Canoras , Animais , Dieta/veterinária , Frutas , Imunidade Inata , Invertebrados
6.
J Anim Ecol ; 88(4): 537-553, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30659607

RESUMO

Seasonal variation in innate immunity is often attributed to either temporal environmental variation or to life-history trade-offs that arise from specific annual cycle stages but decoupling them is difficult in natural populations. Here, we effectively decouple seasonal environmental variation from annual cycle stage effects by exploiting cross-seasonal breeding and moult in the tropical Common Bulbul Pycnonotus barbatus. We test how annual cycle stage interacts with a key seasonal environmental variable, rainfall, to determine immunity at population and individual level. If immune challenge varies with precipitation, we might expect immune function to be higher in the wet season due to increased environmental productivity. If breeding or moult imposes resource constraints on birds, depending on or independent of precipitation, we might expect lower immune indices during breeding or moult. We sampled blood from 818 birds in four annual cycle stage categories: breeding, moult, simultaneous breeding and moulting, or neither. We quantified indices of innate immunity (haptoglobin, nitric oxide (NOx ) and ovotransferrin concentrations, and haemagglutination and haemolysis titres) over two annual cycles of wet and dry seasons. Environment (but not annual cycle stage or interactions between both) explained variation in all immune indices, except NOx . NOx concentration differed between annual cycle stages but not between seasons. However, within the wet season, haptoglobin, NOx , ovotransferrin and haemolysis differed significantly between breeding and non-breeding females. Aside from some recorded inconsistencies, population level results were largely similar to results within individuals that were measured repeatedly. Unexpectedly, most immune indices were higher in the dry season and during breeding. Higher immune indices may be explained if fewer or poorer quality resources force birds to increase social contact, thereby exposing individuals to novel antigens and increased infection risk, independently of environmental productivity. Breeding birds may also show higher immunity if less immune-competent and/or infected females omit breeding. We conclude that seasonal environmental variation impacts immunity more directly in natural animal populations than via resource trade-offs. In addition, immune indices were more often variable within than among individuals, but some indices are characteristic of individuals, and so may offer selective advantages if heritable.


Assuntos
Passeriformes , Aves Canoras , Animais , Cruzamento , Feminino , Imunidade Inata , Estações do Ano
7.
J Ornithol ; 159(4): 1053-1062, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30956931

RESUMO

Bergmann's rule, defined as the tendency for endotherms to be larger in colder environments, is a biophysical generalization of body size variation that is frequently tested along latitudinal gradients, even though latitude is only a proxy for temperature variation. We test whether variation in temperature and aridity determine avian body size conformity to Bergmann's rule independent of latitude differences, using the ubiquitous Common Bulbul Pycnonotus barbatus, along a West African environmental gradient. We trapped 538 birds in 22 locations between latitudes 6 and 13°N in Nigeria, and estimated average body surface area to mass ratio per location. We then modelled body surface to mass ratio using general linear models, with latitude, altitude and one of 19 bioclimatic variables extracted from http://www.worldclim.org/bioclim as predictors. We sequentially dropped latitude and altitude from each model to obtain the R 2 of the resultant models. Finally, we compared the R 2 of univariate models, where bioclimatic variables predicted body surface area to mass ratio significantly (14 out of 19), to multivariate models including latitude, altitude and a bioclimatic variable, using the Wilcoxon matched pairs test. We found that multivariate models did not perform better than univariate models with only bioclimatic variables. Six temperature and eight precipitation variables significantly predicted variation in body surface area to mass ratio between locations; in fact, 50% (seven out of 14) of these better explained variation in body surface area to mass ratio than the multivariate models. Birds showed a larger body surface area relative to body mass ratio in hotter environments independent of latitude or altitude, which conforms to Bergmann's rule. Yet, a combination of morphometric analyses and controlled temperature-exposure experiments is required to prove the proposed relationship between relative body surface area and thermoregulation in endotherms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA