Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neurology ; 94(9): e921-e931, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31882526

RESUMO

OBJECTIVE: Identifying simple biomarkers that can predict or track disease progression in patients with spinal muscular atrophy (SMA) remains an unmet clinical need. To test the hypothesis that serum creatinine (Crn) could be a prognostic biomarker for monitoring progression of denervation in patients with SMA, we determined whether serum Crn concentration correlates with disease severity in patients with SMA. METHODS: We examined a cohort of 238 patients with SMA with 1,130 Crn observations between 2000 and 2016. Analyses were corrected for age, and 156 patients with SMA had dual-energy x-ray absorptiometry data available for correction for lean mass. We investigated the relationship between Crn and SMA type, survival motor neuron 2 (SMN2) copies, and Hammersmith Functional Motor Scale (HFMS) score as primary outcomes. In addition, we tested for associations between Crn and maximum ulnar compound muscle action potential amplitude (CMAP) and motor unit number estimation (MUNE). RESULTS: Patients with SMA type 3 had 2.2-fold (95% confidence interval [CI] 1.93-2.49; p < 0.0001) higher Crn levels compared to those with SMA type 1 and 1.7-fold (95% CI 1.52-1.82; p < 0.0001) higher Crn levels compared to patients with SMA type 2. Patients with SMA type 2 had 1.4-fold (95% CI 1.31-1.58; p < 0.0001) higher Crn levels than patients with SMA type 1. Patients with SMA with 4 SMN2 copies had 1.8-fold (95% CI 1.57-2.11; p < 0.0001) higher Crn levels compared to patients with SMA with 2 SMN2 copies and 1.4-fold (95% CI 1.24-1.58; p < 0.0001) higher Crn levels compared to patients with SMA with 3 SMN2 copies. Patients with SMA with 3 SMN2 copies had 1.4-fold (95% CI 1.21-1.56; p < 0.0001) higher Crn levels than patients with SMA with 2 SMN2 copies. Mixed-effect model revealed significant differences in Crn levels among walkers, sitters, and nonsitters (p < 0.0001) and positive associations between Crn and maximum CMAP (p < 0.0001) and between Crn and MUNE (p < 0.0001). After correction for lean mass, there were still significant associations between Crn and SMA type, SMN2 copies, HFMS, CMAP, and MUNE. CONCLUSIONS: These findings indicate that decreased Crn levels reflect disease severity, suggesting that Crn is a candidate biomarker for SMA progression. We conclude that Crn measurements should be included in the routine analysis of all patients with SMA. In future studies, it will be important to determine whether Crn levels respond to molecular and gene therapies.


Assuntos
Creatinina/sangue , Atrofia Muscular Espinal/diagnóstico , Degeneração Neural/diagnóstico , Potenciais de Ação/fisiologia , Biomarcadores/sangue , Contagem de Células , Criança , Variações do Número de Cópias de DNA/genética , Progressão da Doença , Feminino , Humanos , Lactente , Masculino , Neurônios Motores/patologia , Músculo Esquelético/fisiologia , Atrofia Muscular Espinal/sangue , Atrofia Muscular Espinal/genética , Degeneração Neural/sangue , Valor Preditivo dos Testes , Índice de Gravidade de Doença , Proteína 2 de Sobrevivência do Neurônio Motor/genética
2.
Hum Genet ; 138(3): 241-256, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30788592

RESUMO

Spinal muscular atrophy (SMA) is a progressive motor neuron disease caused by loss or mutation of the survival motor neuron 1 (SMN1) gene and retention of SMN2. We performed targeted capture and sequencing of the SMN2, CFTR, and PLS3 genes in 217 SMA patients. We identified a 6.3 kilobase deletion that occurred in both SMN1 and SMN2 (SMN1/2) and removed exons 7 and 8. The deletion junction was flanked by a 21 bp repeat that occurred 15 times in the SMN1/2 gene. We screened for its presence in 466 individuals with the known SMN1 and SMN2 copy numbers. In individuals with 1 SMN1 and 0 SMN2 copies, the deletion occurred in 63% of cases. We modeled the deletion junction frequency and determined that the deletion occurred in both SMN1 and SMN2. We have identified the first deletion junction where the deletion removes exons 7 and 8 of SMN1/2. As it occurred in SMN1, it is a pathogenic mutation. We called variants in the PLS3 and SMN2 genes, and tested for association with mild or severe exception patients. The variants A-44G, A-549G, and C-1897T in intron 6 of SMN2 were significantly associated with mild exception patients, but no PLS3 variants correlated with severity. The variants occurred in 14 out of 58 of our mild exception patients, indicating that mild exception patients with an intact SMN2 gene and without modifying variants occur. This sample set can be used in the association analysis of candidate genes outside of SMN2 that modify the SMA phenotype.


Assuntos
Deleção de Genes , Estudos de Associação Genética , Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/genética , Fenótipo , Sequência de Bases , Biologia Computacional , Dosagem de Genes , Frequência do Gene , Ligação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Padrões de Herança , Linhagem , Polimorfismo de Nucleotídeo Único , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/genética , Proteína 2 de Sobrevivência do Neurônio Motor/metabolismo
3.
Cell ; 163(7): 1783-1795, 2015 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-26687362

RESUMO

Touch perception begins with activation of low-threshold mechanoreceptors (LTMRs) in the periphery. LTMR terminals exhibit tremendous morphological heterogeneity that specifies their mechanical receptivity. In a survey of mammalian skin, we found a preponderance of neurofilament-heavy-chain(+) circumferential endings associated with hair follicles, prompting us to develop a genetic strategy to interrogate these neurons. Targeted in vivo recordings revealed them to be Aß field-LTMRs, identified 50 years ago but largely elusive thereafter. Remarkably, while Aß field-LTMRs are highly sensitive to gentle stroking of the skin, they are unresponsive to hair deflection, and they encode skin indentation in the noxious range across large, spotty receptive fields. Individual Aß field-LTMRs form up to 180 circumferential endings, making them the most anatomically expansive LTMR identified to date. Thus, Aß field-LTMRs are a major mammalian LTMR subtype that forms circumferential endings in hairy skin, and their sensitivity to gentle skin stroking arises through integration across many low-sensitivity circumferential endings.


Assuntos
Mecanorreceptores/metabolismo , Tato , Animais , Axônios/metabolismo , Tronco Encefálico/metabolismo , Fenômenos Eletrofisiológicos , Folículo Piloso/metabolismo , Filamentos Intermediários/metabolismo , Camundongos , Células Receptoras Sensoriais/metabolismo , Pele/citologia , Pele/metabolismo , Corno Dorsal da Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA