Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370809

RESUMO

Multiplexed reprogramming of T cell specificity and function can generate powerful next-generation cellular therapies. However, current manufacturing methods produce heterogenous mixtures of partially engineered cells. Here, we develop a one-step process to enrich for unlabeled cells with knock-ins at multiple target loci using a family of repair templates named Synthetic Exon/Expression Disruptors (SEEDs). SEED engineering associates transgene integration with the disruption of a paired endogenous surface protein, allowing non-modified and partially edited cells to be immunomagnetically depleted (SEED-Selection). We design SEEDs to fully reprogram three critical loci encoding T cell specificity, co-receptor expression, and MHC expression, with up to 98% purity after selection for individual modifications and up to 90% purity for six simultaneous edits (three knock-ins and three knockouts). These methods are simple, compatible with existing clinical manufacturing workflows, and can be readily adapted to other loci to facilitate production of complex gene-edited cell therapies.

2.
bioRxiv ; 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37986968

RESUMO

There is currently a lack of tools capable of perturbing genes in both a precise and spatiotemporal fashion. CRISPR's ease of use and flexibility, coupled with light's unparalleled spatiotemporal resolution deliverable from a controllable source, makes optogenetic CRISPR a well-suited solution for precise spatiotemporal gene perturbations. Here we present a new optogenetic CRISPR tool, BLU-VIPR, that diverges from prevailing split-Cas design strategies and instead focuses on optogenetic regulation of gRNA production. This simplifies spatiotemporal gene perturbation and works in vivo with cells previously intractable to optogenetic gene editing. We engineered BLU-VIPR around a new potent blue-light activated transcription factor and ribozyme-flanked gRNA. The BLU-VIPR design is genetically encoded and ensures precise excision of multiple gRNAs from a single mRNA transcript, allowing for optogenetic gene editing in T lymphocytes in vivo.

3.
Cell ; 186(19): 4216-4234.e33, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37714135

RESUMO

Chronic stimulation can cause T cell dysfunction and limit the efficacy of cellular immunotherapies. Improved methods are required to compare large numbers of synthetic knockin (KI) sequences to reprogram cell functions. Here, we developed modular pooled KI screening (ModPoKI), an adaptable platform for modular construction of DNA KI libraries using barcoded multicistronic adaptors. We built two ModPoKI libraries of 100 transcription factors (TFs) and 129 natural and synthetic surface receptors (SRs). Over 30 ModPoKI screens across human TCR- and CAR-T cells in diverse conditions identified a transcription factor AP4 (TFAP4) construct that enhanced fitness of chronically stimulated CAR-T cells and anti-cancer function in vitro and in vivo. ModPoKI's modularity allowed us to generate an ∼10,000-member library of TF combinations. Non-viral KI of a combined BATF-TFAP4 polycistronic construct enhanced fitness. Overexpressed BATF and TFAP4 co-occupy and regulate key gene targets to reprogram T cell function. ModPoKI facilitates the discovery of complex gene constructs to program cellular functions.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Exercício Físico , Humanos , Biblioteca Gênica , Imunoterapia , Pesquisa
4.
Cell ; 186(2): 446-460.e19, 2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36638795

RESUMO

Precise targeting of large transgenes to T cells using homology-directed repair has been transformative for adoptive cell therapies and T cell biology. Delivery of DNA templates via adeno-associated virus (AAV) has greatly improved knockin efficiencies, but the tropism of current AAV serotypes restricts their use to human T cells employed in immunodeficient mouse models. To enable targeted knockins in murine T cells, we evolved Ark313, a synthetic AAV that exhibits high transduction efficiency in murine T cells. We performed a genome-wide knockout screen and identified QA2 as an essential factor for Ark313 infection. We demonstrate that Ark313 can be used for nucleofection-free DNA delivery, CRISPR-Cas9-mediated knockouts, and targeted integration of large transgenes. Ark313 enables preclinical modeling of Trac-targeted CAR-T and transgenic TCR-T cells in immunocompetent models. Efficient gene targeting in murine T cells holds great potential for improved cell therapies and opens avenues in experimental T cell immunology.


Assuntos
Dependovirus , Engenharia Genética , Linfócitos T , Animais , Camundongos , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Marcação de Genes , Engenharia Genética/métodos
5.
EMBO Rep ; 24(1): e54944, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36341538

RESUMO

Melanoma tumors are highly metastatic partly due to the ability of melanoma cells to transition between invasive and proliferative states. However, the mechanisms underlying this plasticity are still not fully understood. To identify new epigenetic regulators of melanoma plasticity, we combined data mining, tumor models, proximity proteomics, and CUT&RUN sequencing. We focus on the druggable family of bromodomain epigenetic readers and identify TRIM28 as a new regulator of melanoma plasticity. We find that TRIM28 promotes the expression of pro-invasive genes and that TRIM28 controls the balance between invasiveness and growth of melanoma cells. We demonstrate that TRIM28 acts via the transcription factor JUNB that directly regulates the expression of pro-invasive and pro-growth genes. Mechanistically, TRIM28 controls the expression of JUNB by negatively regulating its transcriptional elongation by RNA polymerase II. In conclusion, our results demonstrate that a TRIM28-JUNB axis controls the balance between invasiveness and growth in melanoma tumors and suggest that the bromodomain protein TRIM28 could be targeted to reduce tumor spread.


Assuntos
Regulação da Expressão Gênica , Melanoma , Humanos , Linhagem Celular Tumoral , Proteína 28 com Motivo Tripartido/genética , Melanoma/genética
6.
Nature ; 609(7925): 174-182, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36002574

RESUMO

The efficacy of adoptive T cell therapies for cancer treatment can be limited by suppressive signals from both extrinsic factors and intrinsic inhibitory checkpoints1,2. Targeted gene editing has the potential to overcome these limitations and enhance T cell therapeutic function3-10. Here we performed multiple genome-wide CRISPR knock-out screens under different immunosuppressive conditions to identify genes that can be targeted to prevent T cell dysfunction. These screens converged on RASA2, a RAS GTPase-activating protein (RasGAP) that we identify as a signalling checkpoint in human T cells, which is downregulated upon acute T cell receptor stimulation and can increase gradually with chronic antigen exposure. RASA2 ablation enhanced MAPK signalling and chimeric antigen receptor (CAR) T cell cytolytic activity in response to target antigen. Repeated tumour antigen stimulations in vitro revealed that RASA2-deficient T cells show increased activation, cytokine production and metabolic activity compared with control cells, and show a marked advantage in persistent cancer cell killing. RASA2-knockout CAR T cells had a competitive fitness advantage over control cells in the bone marrow in a mouse model of leukaemia. Ablation of RASA2 in multiple preclinical models of T cell receptor and CAR T cell therapies prolonged survival in mice xenografted with either liquid or solid tumours. Together, our findings highlight RASA2 as a promising target to enhance both persistence and effector function in T cell therapies for cancer treatment.


Assuntos
Antígenos de Neoplasias , Neoplasias , Linfócitos T , Proteínas Ativadoras de ras GTPase , Animais , Antígenos de Neoplasias/imunologia , Medula Óssea , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Imunoterapia Adotiva , Leucemia/imunologia , Leucemia/patologia , Leucemia/terapia , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Ativadoras de ras GTPase/deficiência , Proteínas Ativadoras de ras GTPase/genética
7.
Immunology ; 159(3): 335-343, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31755557

RESUMO

TRIM21 is an interferon-stimulated E3 ligase that controls the activity of pattern-recognition signaling via ubiquitination of interferon regulatory factors and DDX41. Previous studies on the role of TRIM21 in innate immune responses have yielded contradictory results, suggesting that the role of TRIM21 is cell specific. Here, we report that bone-marrow-derived macrophages (BMDMs) generated from Trim21-/- mice have reduced expression of mature macrophage markers. Reflecting their reduced differentiation in response to macrophage colony-stimulating factor (M-CSF), Trim21-/- BMDMs had decreased expression of M-CSF signature genes. Although Trim21-/- BMDMs responded normally to Toll-like receptor 9 (TLR9) activation, they produced lower levels of pro-inflammatory cytokines in response to the TLR2 agonist PAM3CSK4. In line with this, the response to infection with the Bacillus Calmette-Guérin strain of Mycobacterium bovis was also diminished in Trim21-/- BMDMs. Our results indicate that TRIM21 controls responses to TLR2 agonists.


Assuntos
Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Ribonucleoproteínas/metabolismo , Receptor 2 Toll-Like/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Interações Hospedeiro-Patógeno , Lipopeptídeos/farmacologia , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium bovis/imunologia , Mycobacterium bovis/patogenicidade , Fenótipo , Ribonucleoproteínas/deficiência , Ribonucleoproteínas/genética , Transdução de Sinais , Receptor 2 Toll-Like/agonistas , Receptor 2 Toll-Like/genética
8.
Eur J Immunol ; 49(2): 313-322, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30307034

RESUMO

Systemic autoimmune diseases are characterized by the overexpression of type I IFN stimulated genes, and accumulating evidence indicate a role for type I IFNs in these diseases. However, the underlying mechanisms for this are still poorly understood. To explore the role of type I IFN regulated miRNAs in systemic autoimmune disease, we characterized cellular expression of miRNAs during both acute and chronic type I IFN responses. We identified a T cell-specific reduction of miR-31-5p levels, both after intramuscular injection of IFNß and in patients with Sjögren's syndrome (SjS). To interrogate the role of miR-31-51p in T cells we transfected human CD4+ T cells with a miR-31-5p inhibitor and performed metabolic measurements. This identified an increase in basal levels of glucose metabolism after inhibition of miR-31-5p. Furthermore, treatment with IFN-α also increased the basal levels of human CD4+ T-cell metabolism. In all, our results suggest that reduced levels of miR-31-5p in T cells of SjS patients support autoimmune T-cell responses during chronic type I IFN exposure.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Metabolismo Energético/imunologia , MicroRNAs/imunologia , Síndrome de Sjogren/imunologia , Linfócitos T CD4-Positivos/patologia , Metabolismo Energético/efeitos dos fármacos , Feminino , Humanos , Interferon-alfa/imunologia , Interferon-alfa/farmacologia , Interferon beta/imunologia , Interferon beta/farmacologia , Masculino , Síndrome de Sjogren/patologia
9.
Biochem Biophys Res Commun ; 473(4): 789-794, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27003259

RESUMO

Endoplasmic reticulum (ER) stress is a physiological response to protein overload or misfolded proteins in the ER. Certain anti-cancer drugs, e.g. bortezomib and nelfinavir, induce ER stress implying that this could be a successful therapeutic strategy against several forms of cancer. To find novel ER-stress inducers we screened a panel of natural and synthetic Toll-like receptor (TLR) agonists against human keratinocytes and identified the anti-cancer drug imiquimod (IMQ) as a potent inducer of ER stress. Other TLR7 and TLR8 agonists, including resiquimod and gardiquimod, did not induce ER stress, demonstrating that IMQ induces ER stress independently of TLR7 and TLR8. We further confirmed this by showing that IMQ could still induce ER stress in mouse Tlr7(-/-) cells. IMQ also induced a rapid and transient influx of extracellular Ca(2+) together with the release of Ca(2+) from internal stores. Depletion of Ca(2+) from the ER is a known cause of ER stress suggesting that IMQ induces ER stress via depletion of ER Ca(2+). The ER-stress inducing property of IMQ is possibly of importance for its efficacy in treating basal cell carcinoma, in situ melanoma, and squamous cell carcinoma. Our data could potentially be harnessed for rational design of even more potent ER-stress inducers and new anti-cancer drugs.


Assuntos
Aminoquinolinas/farmacologia , Cálcio/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Queratinócitos/fisiologia , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Animais , Antineoplásicos/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Imiquimode , Queratinócitos/efeitos dos fármacos , Camundongos
10.
Exp Cell Res ; 333(1): 105-15, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25724901

RESUMO

The EphB4 receptor tyrosine kinase is over-expressed in a variety of different epithelial cancers including prostate where it has been shown to be involved in survival, migration and angiogenesis. We report here that EphB4 also resides in the nucleus of prostate cancer cell lines. We used in silico methods to identify a bipartite nuclear localisation signal (NLS) in the extracellular domain and a monopartite NLS sequence in the intracellular kinase domain of EphB4. To determine whether both putative NLS sequences were functional, fragments of the EphB4 sequence containing each NLS were cloned to create EphB4NLS-GFP fusion proteins. Localisation of both NLS-GFP proteins to the nuclei of transfected cells was observed, demonstrating that EphB4 contains two functional NLS sequences. Mutation of the key amino residues in both NLS sequences resulted in diminished nuclear accumulation. As nuclear translocation is often dependent on importins we confirmed that EphB4 and importin-α can interact. To assess if nuclear EphB4 could be implicated in gene regulatory functions potential EphB4-binding genomic loci were identified using chromatin immunoprecipitation and Lef1 was confirmed as a potential target of EphB4-mediated gene regulation. These novel findings add further complexity to the biology of this important cancer-associated receptor.


Assuntos
Núcleo Celular/metabolismo , Receptor EphB4/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Linhagem Celular Tumoral , DNA/metabolismo , Expressão Gênica , Humanos , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Masculino , Dados de Sequência Molecular , Sinais de Localização Nuclear , Neoplasias da Próstata , Ligação Proteica , Receptor EphB4/química , alfa Carioferinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA