Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Nano Lett ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38865258

RESUMO

Hybrid semiconductor-superconductor nanowires have emerged as a cornerstone in modern quantum devices. Integrating such nanowires into hybrid devices typically requires extensive postgrowth processing which may affect device performance unfavorably. Here, we present a technique for in situ shadowing superconductors on nanowires and compare the structural and electronic properties of Al junctions formed by shadowing versus etching. Based on transmission electron microscopy, we find that typical etching procedures lead to atomic-scale surface roughening. This surface perturbation may cause a reduction of the electron mobility as demonstrated in transport measurements. Further, we display advanced shadowing geometries aiding in the pursuit of bringing fabrication of hybrid devices in situ. Finally, we give examples of shadowed junctions exploited in various device geometries that exhibit high-quality quantum transport signatures.

2.
Nano Lett ; 24(22): 6488-6495, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38771151

RESUMO

Understanding heating and cooling mechanisms in mesoscopic superconductor-semiconductor devices is crucial for their application in quantum technologies. Owing to their poor thermal conductivity, heating effects can drive superconducting-to-normal transitions even at low bias, observed as sharp conductance dips through the loss of Andreev excess currents. Tracking such dips across magnetic field, cryostat temperature, and applied microwave power allows us to uncover cooling bottlenecks in different parts of a device. By applying this "Joule spectroscopy" technique, we analyze heat dissipation in devices based on InAs-Al nanowires and reveal that cooling of superconducting islands is limited by the rather inefficient electron-phonon coupling, as opposed to grounded superconductors that primarily cool by quasiparticle diffusion. We show that powers as low as 50-150 pW are able to suppress superconductivity on the islands. Applied microwaves lead to similar heating effects but are affected by the interplay of the microwave frequency and the effective electron-phonon relaxation time.

3.
Nat Commun ; 15(1): 3465, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658553

RESUMO

Controlled coupling between distant particles is a key requirement for the implementation of quantum information technologies. A promising platform are hybrid systems of semiconducting quantum dots coupled to superconducting islands, where the tunability of the dots is combined with the macroscopic coherence of the islands to produce states with non-local correlations, e.g. in Cooper pair splitters. Electrons in hybrid quantum dots are typically not amenable to long-distance spin alignment as they tend to be screened into a localized singlet state by bound superconducting quasiparticles. However, two quasiparticles coming from different superconductors can overscreen the quantum dot into a doublet state, leading to ferromagnetic correlations between the superconducting islands. We present experimental evidence of a stabilized overscreened state, implying correlated quasiparticles over a micrometer distance. We propose alternating chains of quantum dots and superconducting islands as a novel platform for controllable large-scale spin coupling.

4.
ACS Nano ; 17(6): 5528-5535, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36912466

RESUMO

Understanding the microscopic origin of the gate-controlled supercurrent (GCS) in superconducting nanobridges is crucial for engineering superconducting switches suitable for a variety of electronic applications. The origin of GCS is controversial, and various mechanisms have been proposed to explain it. In this work, we have investigated the GCS in a Ta layer deposited on the surface of InAs nanowires. Comparison between switching current distributions at opposite gate polarities and between the gate dependence of two opposite side gates with different nanowire-gate spacings shows that the GCS is determined by the power dissipated by the gate leakage. We also found a substantial difference between the influence of the gate and elevated bath temperature on the magnetic field dependence of the supercurrent. Detailed analysis of the switching dynamics at high gate voltages shows that the device is driven into the multiple phase slips regime by high-energy fluctuations arising from the leakage current.

5.
Nano Lett ; 22(22): 8845-8851, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36332116

RESUMO

Implementing superconductors capable of proximity-inducing a large energy gap in semiconductors in the presence of strong magnetic fields is a major goal toward applications of semiconductor/superconductor hybrid materials in future quantum information technologies. Here, we study the performance of devices consisting of InAs nanowires in electrical contact with molybdenum-rhenium (MoRe) superconducting alloys. The MoRe thin films exhibit transition temperatures of ∼10 K and critical fields exceeding 6 T. Normal/superconductor devices enabled tunnel spectroscopy of the corresponding induced superconductivity, which was maintained up to ∼10 K, and MoRe-based Josephson devices exhibited supercurrents and multiple Andreev reflections. We determine an induced superconducting gap lower than expected from the transition temperature and observe gap softening at finite magnetic field. These may be common features for hybrids based on large-gap, type II superconductors. The results encourage further development of MoRe-based hybrids.

6.
Nanoscale Adv ; 4(18): 3816-3823, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36133323

RESUMO

We compare the adiabatic quantized charge pumping performed in two types of InAs nanowire double quantum dots (DQDs), either with tunnel barriers defined by closely spaced narrow bottom gates, or by well-separated side gates. In the device with an array of bottom gates of 100 nm pitch and 10 µm lengths, the pump current is quantized only up to frequencies of a few MHz due to the strong capacitive coupling between the bottom gates. In contrast, in devices with well-separated side gates with reduced mutual gate capacitances, we find well-defined pump currents up to 30 MHz. Our experiments demonstrate that high frequency quantized charge pumping requires careful optimization of the device geometry, including the typically neglected gate feed lines.

7.
Nano Lett ; 22(14): 5765-5772, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35833741

RESUMO

We characterize in situ grown parallel nanowires bridged by a superconducting island. The magnetic-field and temperature dependence of Coulomb blockade peaks measured across different pairs of nanowire ends suggest the presence of a subgap state extended over the hybrid parallel-nanowire island. Being gate-tunable, accessible by multiple terminals, and free of quasiparticle poisoning, these nanowires show promise for the implementation of several proposals that rely on parallel nanowire platforms.


Assuntos
Nanofios , Transporte de Elétrons , Eletrônica , Temperatura
8.
Nat Commun ; 13(1): 2243, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473891

RESUMO

Cooper pairing and Coulomb repulsion are antagonists, producing distinct energy gaps in superconductors and Mott insulators. When a superconductor exchanges unpaired electrons with a quantum dot, its gap is populated by a pair of electron-hole symmetric Yu-Shiba-Rusinov excitations between doublet and singlet many-body states. The fate of these excitations in the presence of a strong Coulomb repulsion in the superconductor is unknown, but of importance in applications such as topological superconducting qubits and multi-channel impurity models. Here we couple a quantum dot to a superconducting island with a tunable Coulomb repulsion. We show that a strong Coulomb repulsion changes the singlet many-body state into a two-body state. It also breaks the electron-hole energy symmetry of the excitations, which thereby lose their Yu-Shiba-Rusinov character.

9.
Nano Lett ; 21(23): 9875-9881, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34807620

RESUMO

We report in situ synthesis of crystalline indium islands on InAs nanowires grown by molecular beam epitaxy. Structural analysis by transmission electron microscopy showed that In crystals grew in a tetragonal body-centered crystal structure within two families of orientations relative to wurtzite InAs. The crystalline islands had lengths < 500 nm and low-energy surfaces, suggesting that growth was driven mainly by surface energy minimization. Electrical transport through In/InAs devices exhibited Cooper pair charging, evidencing charge parity preservation and a pristine In/InAs interface, with an induced superconducting gap ∼ 0.45 meV. Cooper pair charging persisted to temperatures > 1.2 K and magnetic fields ∼ 0.7 T, demonstrating that In/InAs hybrids belong to an expanding class of semiconductor/superconductor hybrids operating over a wider parameter space than state-of-the-art Al-based hybrids. Engineering crystal morphology while isolating single islands using shadow epitaxy provides an interesting alternative to previous semiconductor/superconductor hybrid morphologies and device geometries.

10.
Nano Lett ; 21(22): 9684-9690, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34726405

RESUMO

Gate-controlled supercurrent (GCS) in superconducting nanobridges has recently attracted attention as a means to create superconducting switches. Despite the clear advantages for applications, the microscopic mechanism of this effect is still under debate. In this work, we realize GCS for the first time in a highly crystalline superconductor epitaxially grown on an InAs nanowire. We show that the supercurrent in the epitaxial Al layer can be switched to the normal state by applying ≃±23 V on a bottom gate insulated from the nanowire by a crystalline hBN layer. Our extensive study of the temperature and magnetic field dependencies suggests that the electric field is unlikely to be the origin of GCS in our device. Though hot electron injection alone cannot explain our experimental findings, a very recent non-equilibrium phonons based picture is compatible with most of our results.

11.
Nano Lett ; 21(21): 9038-9043, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34704766

RESUMO

III-V compound nanowires have electrical and optical properties suitable for a wide range of applications, including photovoltaics and photodetectors. Furthermore, their elastic nature allows the use of strain engineering to enhance their performance. Here we have investigated the effect of mechanical strain on the photocurrent and the electrical properties of single GaAs nanowires with radial p-i-n junctions, using a nanoprobing setup. A uniaxial tensile strain of 3% resulted in an increase in photocurrent by more than a factor of 4 during NIR illumination. This effect is attributed to a decrease of 0.2 eV in nanowire bandgap energy, revealed by analysis of the current-voltage characteristics as a function of strain. This analysis also shows how other properties are affected by the strain, including the nanowire resistance. Furthermore, electron-beam-induced current maps show that the charge collection efficiency within the nanowire is unaffected by strain measured up to 0.9%.

12.
Nano Lett ; 21(19): 7929-7937, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34538054

RESUMO

Coupling individual atoms fundamentally changes the state of matter: electrons bound to atomic cores become delocalized turning an insulating state to a metallic one. A chain of atoms could lead to more exotic states if the tunneling takes place via the superconducting vacuum and can induce topologically protected excitations like Majorana or parafermions. Although coupling a single atom to a superconductor is well studied, the hybridization of two sites with individual tunability was not reported yet. The peculiar vacuum of the Bardeen-Cooper-Schrieffer (BCS) condensate opens the way to annihilate or generate two electrons from the bulk resulting in a so-called Andreev molecular state. By employing parallel nanowires with an Al shell, two artificial atoms were created at a minimal distance with an epitaxial superconducting link between. Hybridization via the BCS vacuum was observed and the spectrum of an Andreev molecule as a function of level positions was explored for the first time.

13.
Sci Rep ; 11(1): 19034, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34561484

RESUMO

Little-Parks oscillations of a hollow superconducting cylinder are of interest for flux-driven topological superconductivity in single Rashba nanowires. The oscillations are typically symmetric in the orientation of the applied magnetic flux. Using double InAs nanowires coated by an epitaxial superconducting Al shell which, despite the non-centro-symmetric geometry, behaves effectively as one hollow cylinder, we demonstrate that a small misalignment of the applied parallel field with respect to the axis of the nanowires can produce field-asymmetric Little-Parks oscillations. These are revealed by the simultaneous application of a magnetic field perpendicular to the misaligned parallel field direction. The asymmetry occurs in both the destructive regime, in which superconductivity is destroyed for half-integer quanta of flux through the shell, and in the non-destructive regime, where superconductivity is depressed but not fully destroyed at these flux values.

14.
Nat Nanotechnol ; 16(7): 776-781, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33972757

RESUMO

Semiconductor-superconductor hybrids are widely used to realize complex quantum phenomena, such as topological superconductivity and spins coupled to Cooper pairs. Accessing new, exotic regimes at high magnetic fields and increasing operating temperatures beyond the state-of-the-art requires new, epitaxially matched semiconductor-superconductor materials. One challenge is the generation of favourable conditions for heterostructural formation between materials with the desired properties. Here we harness an increased knowledge of metal-on-semiconductor growth to develop InAs nanowires with epitaxially matched, single-crystal, atomically flat Pb films with no axial grain boundaries. These highly ordered heterostructures have a critical temperature of 7 K and a superconducting gap of 1.25 meV, which remains hard at 8.5 T, and therefore they offer a parameter space more than twice as large as those of alternative semiconductor-superconductor hybrids. Additionally, InAs/Pb island devices exhibit magnetic field-driven transitions from a Cooper pair to single-electron charging, a prerequisite for use in topological quantum computation. Semiconductor-Pb hybrids potentially enable access to entirely new regimes for a number of different quantum systems.

15.
Adv Mater ; 32(23): e1908411, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32337791

RESUMO

Uniform, defect-free crystal interfaces and surfaces are crucial ingredients for realizing high-performance nanoscale devices. A pertinent example is that advances in gate-tunable and topological superconductivity using semiconductor/superconductor electronic devices are currently built on the hard proximity-induced superconducting gap obtained from epitaxial indium arsenide/aluminum heterostructures. Fabrication of devices requires selective etch processes; these exist only for InAs/Al hybrids, precluding the use of other, potentially superior material combinations. This work introduces a crystal growth platform-based on 3D structuring of growth substrates-which enables synthesis of semiconductor nanowire hybrids with in situ patterned superconductor shells. The platform eliminates the need for etching, thereby enabling full freedom in the choice of hybrid constituents. All of the most frequently used superconducting hybrid device architectures are realized and characterized. These devices exhibit increased yield and electrostatic stability compared to etched devices, and evidence of ballistic superconductivity is observed. In addition to aluminum, hybrid structures based on tantalum, niobium, and vanadium are presented.

16.
Nat Commun ; 11(1): 1834, 2020 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286260

RESUMO

Various promising qubit concepts have been put forward recently based on engineered superconductor subgap states like Andreev bound states, Majorana zero modes or the Yu-Shiba-Rusinov (Shiba) states. The coupling of these subgap states via a superconductor strongly depends on their spatial extension and is an essential next step for future quantum technologies. Here we investigate the spatial extension of a Shiba state in a semiconductor quantum dot coupled to a superconductor. With detailed transport measurements and numerical renormalization group calculations we find a remarkable more than 50 nm extension of the zero energy Shiba state, much larger than the one observed in very recent scanning tunneling microscopy measurements. Moreover, we demonstrate that its spatial extension increases substantially in a magnetic field.

17.
Nanotechnology ; 30(29): 294005, 2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-30947145

RESUMO

We report MBE synthesis of InAs/vanadium hybrid nanowires. The vanadium was deposited without breaking ultra-high vacuum after InAs nanowire growth, minimizing any effect of oxidation and contamination at the interface between the two materials. We investigated four different substrate temperatures during vanadium deposition, ranging from -150 °C to 250 °C. The structural relation between vanadium and InAs depended on the deposition temperature. The three lower temperature depositions gave vanadium shells with a polycrystalline, granular morphology and the highest temperature resulted in vanadium reacting with the InAs nanowire. We fabricated electronic devices from the hybrid nanowires and obtained a high out-of-plane critical magnetic field, exceeding the bulk value for vanadium. However, size effects arising from the nanoscale grains resulted in the absence of a well-defined critical temperature, as well as device-to-device variation in the resistivity versus temperature dependence during the transition to the superconducting state.

18.
Nat Commun ; 10(1): 245, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651552

RESUMO

Quantum computation by non-Abelian Majorana zero modes (MZMs) offers an approach to achieve fault tolerance by encoding quantum information in the non-local charge parity states of semiconductor nanowire networks in the topological superconductor regime. Thus far, experimental studies of MZMs chiefly relied on single electron tunneling measurements, which lead to the decoherence of the quantum information stored in the MZM. As a next step towards topological quantum computation, charge parity conserving experiments based on the Josephson effect are required, which can also help exclude suggested non-topological origins of the zero bias conductance anomaly. Here we report the direct measurement of the Josephson radiation frequency in indium arsenide nanowires with epitaxial aluminium shells. We observe the 4π-periodic Josephson effect above a magnetic field of ≈200 mT, consistent with the estimated and measured topological phase transition of similar devices.

19.
Nano Lett ; 18(8): 4949-4956, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30044917

RESUMO

Free-standing semiconductor nanowires constitute an ideal material system for the direct manipulation of electrical and optical properties by strain engineering. In this study, we present a direct quantitative correlation between electrical conductivity and nanoscale lattice strain of individual InAs nanowires passivated with a thin epitaxial In0.6Ga0.4As shell. With an in situ electron microscopy electromechanical testing technique, we show that the piezoresistive response of the nanowires is greatly enhanced compared to bulk InAs, and that uniaxial elastic strain leads to increased conductivity, which can be explained by a strain-induced reduction in the band gap. In addition, we observe inhomogeneity in strain distribution, which could have a reverse effect on the conductivity by increasing the scattering of charge carriers. These results provide a direct correlation of nanoscale mechanical strain and electrical transport properties in free-standing nanostructures.

20.
Opt Express ; 26(26): 34622-34632, 2018 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-30650883

RESUMO

Diffraction gratings have a wide array of applications in optics, diagnostics, food science, sensing, and process inspection. Scattering effects from defects can severely degrade the performance of such gratings. In this paper, we consider three classes of defects: Two classes introduced at the grating/air interface, as a change in line heights, and one class introduced as a sinusoidal variation of the grating/substrate interface. The scattering properties of the gratings are modelled using rigorous coupled wave analysis, and defects are approximated with a new semi-analytical model and a neural network. The new methods make it possible to avoid the time consuming library generation/search strategy commonly used in scatterometry. The method does not introduce new numerical parameters, and therefore no new parameter correlations. This work enables improved grating reconstruction, especially of non-diffracting short pitch gratings. It is found that two of the defect classes can be adequately described by the semi-analytical model, while the third defect is accurately reconstructed by a neural network. The network is demonstrated to be faster than a library search and more versatile for related structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA