Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Front Pharmacol ; 15: 1369489, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655187

RESUMO

Introduction: Pulmonary arterial hypertension (PAH) is characterised by endothelial dysfunction and pathological vascular remodelling, resulting in the occlusion of pulmonary arteries and arterioles, right ventricular hypertrophy, and eventually fatal heart failure. Targeting the apelin receptor with the novel, G protein-biased peptide agonist, MM07, is hypothesised to reverse the developed symptoms of elevated right ventricular systolic pressure and right ventricular hypertrophy. Here, the effects of MM07 were compared with the clinical standard-of-care endothelin receptor antagonist macitentan. Methods: Male Sprague-Dawley rats were randomised and treated with either normoxia/saline, or Sugen/hypoxia (SuHx) to induce an established model of PAH, before subsequent treatment with either saline, macitentan (30 mg/kg), or MM07 (10 mg/kg). Rats were then anaesthetised and catheterised for haemodynamic measurements, and tissues collected for histopathological assessment. Results: The SuHx/saline group presented with significant increases in right ventricular hypertrophy, right ventricular systolic pressure, and muscularization of pulmonary arteries compared to normoxic/saline controls. Critically, MM07 was as at least as effective as macitentan in significantly reversing detrimental structural and haemodynamic changes after 4 weeks of treatment. Discussion: These results support the development of G protein-biased apelin receptor agonists with improved pharmacokinetic profiles for use in human disease.

2.
Biochem Soc Trans ; 51(4): 1437-1445, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37387353

RESUMO

Claudin-2 is a tight junction protein expressed in leaky epithelia where it forms paracellular pores permeable to cations and water. The paracellular pore formed by claudin-2 is important in energy-efficient cation and water transport in the proximal tubules of the kidneys. Mounting evidence now suggests that claudin-2 may modulate cellular processes often altered in disease, including cellular proliferation. Also, dysregulation of claudin-2 expression has been linked to various diseases, including kidney stone disease and renal cell carcinoma. However, the mechanisms linking altered claudin-2 expression and function to disease are poorly understood and require further investigation. The aim of this review is to discuss the current understanding of the role of claudin-2 in kidney function and dysfunction. We provide a general overview of the claudins and their organization in the tight junction, the expression, and function of claudin-2 in the kidney, and the evolving evidence for its role in kidney disease.


Assuntos
Claudina-2 , Túbulos Renais Proximais , Claudina-2/metabolismo , Túbulos Renais Proximais/metabolismo , Transporte Biológico/fisiologia , Rim/metabolismo , Junções Íntimas/metabolismo , Água/metabolismo
3.
J Interv Cardiol ; 2022: 9154048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36262459

RESUMO

Objective: Coronary microvascular dysfunction (CMD) can complicate successful percutaneous coronary intervention (PCI). The potent endogenous vasoconstrictor peptide Endothelin-1 (ET-1) may be an important mediator. To investigate the mechanism, we sought to define the peri-procedural trans-myocardial gradient (TMG-coronary sinus minus aortic root levels) of ET-1 and its precursor peptide - Big ET-1. We then assessed correlation with pressure-wire indices of CMD: coronary flow reserve (CFR) and index of microvascular resistance (IMR). Methods: Paired blood samples from the guide catheter and coronary sinus were collected before and after pressure-wire-guided PCI from patients with stable angina. Plasma was analysed using a specific enzyme-linked immunosorbent assay for quantification of ET-1 peptides and correlated with pressure-wire data. Non normally distributed continuous variables are presented as median [IQR]. Results: ET-1 and Big ET-1 increased post-PCI in the aorta (ET-1: 0.98 [0.76-1.26] pg/ml to 1.20 [1.03-1.67] pg/ml, P < 0.001 and Big ET-1: 2.74 [1.78-2.50] pg/ml to 3.36 [2.33-3.97] pg/ml, P < 0.001) and coronary sinus (ET-1: 1.00 [0.81-1.28] pg/ml to 1.09 [0.91-1.30] pg/ml, P = 0.03 and Big ET-1: 2.89 [1.95-3.83] pg/ml to 3.56 [2.66-4.83] pg/ml, P = 0.01). TMG of ET-1 shifted negatively compared with baseline following PCI reflecting significantly increased extraction (0.03 [-0.12-0.17] pg/ml pre-PCI versus -0.16 [-0.36-0.07] pg/ml post-PCI, P = 0.01). Increased ET-1 trans-myocardial extraction correlated with higher IMR (Pearson's r = 0.293, P = 0.02) and increased hyperemic transit time (Pearson's r = 0.333, P < 0.01). In subgroup analysis, mean ET-1 trans-myocardial extraction was higher amongst patients with high IMR compared with low IMR (0.73 pg/ml, SD:0.78 versus 0.17 pg/ml, SD:0.42, P = 0.02). There was additionally a numerical trend towards increased ET-1 trans-myocardial extraction in subgroups of patients with low CFR and in patients with Type 4a Myocardial Infarction, albeit not reaching statistical significance. Conclusions: Circulating ET-1 increases post-PCI and upregulated ET-1 trans-myocardial extraction contributes to increased microcirculatory resistance.


Assuntos
Angina Estável , Intervenção Coronária Percutânea , Humanos , Microcirculação , Endotelina-1 , Vasoconstritores , Resistência Vascular , Circulação Coronária
4.
Br J Clin Pharmacol ; 88(12): 5295-5306, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35748053

RESUMO

AIMS: Chronic kidney disease (CKD) is common and cardiovascular disease (CVD) is its commonest complication. The apelin system is a potential therapeutic target for CVD but data relating to apelin in CKD are limited. We examined expression of the apelin system in human kidney, and investigated apelin and Elabela/Toddler (ELA), the endogenous ligands for the apelin receptor, in patients with CKD. METHODS: Using autoradiography, immunohistochemistry and enzyme-linked immunosorbent assay, we assessed expression of apelin, ELA and the apelin receptor in healthy human kidney, and measured plasma apelin and ELA in 155 subjects (128 patients with CKD, 27 matched controls) followed up for 5 years. Cardiovascular assessments included blood pressure, arterial stiffness (pulse wave velocity) and brachial artery flow-mediated dilation. Surrogate markers of endothelial function (plasma asymmetric dimethylarginine and endothelin-1) and inflammation (C-reactive protein and interleukin-6) were measured. RESULTS: The apelin system was expressed in healthy human kidney, throughout the nephron. Plasma apelin concentrations were 60% higher in women than men (6.48 [3.62-9.89] vs. 3.95 [2.02-5.85] pg/mL; P < .0001), and increased as glomerular filtration rate declined (R = -0.41, P < .0001), and albuminuria rose (R = 0.52, P < .0001). Plasma apelin and ELA were associated with vascular dysfunction. Plasma apelin associated independently with a 50% decline in glomerular filtration rate at 5 years. CONCLUSION: We show for the first time that the apelin system is expressed in healthy human kidney. Plasma apelin is elevated in CKD and may be a potential biomarker of risk of decline in kidney function. Clinical studies exploring the therapeutic potential of apelin agonism in CKD are warranted.


Assuntos
Doenças Cardiovasculares , Hormônios Peptídicos , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Apelina , Receptores de Apelina/metabolismo , Análise de Onda de Pulso , Hormônios Peptídicos/metabolismo , Rim , Biomarcadores
5.
Sci Rep ; 11(1): 24336, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34934117

RESUMO

ACE2 is a membrane protein that regulates the cardiovascular system. Additionally, ACE2 acts as a receptor for host cell infection by human coronaviruses, including SARS-CoV-2 that emerged as the cause of the on-going COVID-19 pandemic and has brought unprecedented burden to economy and health. ACE2 binds the spike protein of SARS-CoV-2 with high affinity and shows little variation in amino acid sequence meaning natural resistance is rare. The discovery of a novel short ACE2 isoform (deltaACE2) provides evidence for inter-individual differences in SARS-CoV-2 susceptibility and severity, and likelihood of developing subsequent 'Long COVID'. Critically, deltaACE2 loses SARS-CoV-2 spike protein binding sites in the extracellular domain, and is predicted to confer reduced susceptibility to viral infection. We aimed to assess the differential expression of full-length ACE2 versus deltaACE2 in a panel of human tissues (kidney, heart, lung, and liver) that are implicated in COVID-19, and confirm ACE2 protein in these tissues. Using dual antibody staining, we show that deltaACE2 localises, and is enriched, in lung airway epithelia and bile duct epithelia in the liver. Finally, we also confirm that a fluorescently tagged SARS-CoV-2 spike protein monomer shows low binding at lung and bile duct epithelia where dACE2 is enriched.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Enzima de Conversão de Angiotensina 2/genética , Ductos Biliares/metabolismo , Ductos Biliares/virologia , Sítios de Ligação , COVID-19/patologia , COVID-19/virologia , Humanos , Pulmão/metabolismo , Pulmão/virologia , Microscopia de Fluorescência por Excitação Multifotônica , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Virais/química , Receptores Virais/metabolismo , SARS-CoV-2/isolamento & purificação , Glicoproteína da Espícula de Coronavírus/química , Internalização do Vírus
6.
Nat Rev Nephrol ; 17(12): 840-853, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34389827

RESUMO

Chronic kidney disease (CKD) is a leading cause of global morbidity and mortality and is independently associated with cardiovascular disease. The mainstay of treatment for CKD is blockade of the renin-angiotensin-aldosterone system (RAAS), which reduces blood pressure and proteinuria and slows kidney function decline. Despite this treatment, many patients progress to kidney failure, which requires dialysis or kidney transplantation, and/or die as a result of cardiovascular disease. The apelin system is an endogenous physiological regulator that is emerging as a potential therapeutic target for many diseases. This system comprises the apelin receptor and its two families of endogenous ligands, apelin and elabela/toddler. Preclinical and clinical studies show that apelin receptor ligands are endothelium-dependent vasodilators and potent inotropes, and the apelin system has a reciprocal relationship with the RAAS. In preclinical studies, apelin regulates glomerular haemodynamics and acts on the tubule to promote aquaresis. In addition, apelin is protective in several kidney injury models. Although the apelin system has not yet been studied in patients with CKD, the available data suggest that apelin is a promising potential therapeutic target for kidney disease.


Assuntos
Doenças Cardiovasculares , Insuficiência Renal Crônica , Apelina/metabolismo , Receptores de Apelina/metabolismo , Humanos , Ligantes , Insuficiência Renal Crônica/tratamento farmacológico , Sistema Renina-Angiotensina
7.
Peptides ; 145: 170642, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34455010

RESUMO

BACKGROUND: Elabela/Toddler (ELA) is a novel endogenous ligand of the apelin receptor, whose signalling has emerged as a therapeutic target, for example, in cardiovascular disease and cancer. Shorter forms of ELA-32 have been predicted, including ELA-21 and ELA-11, but metabolism and stability of ELA-32 in humans is poorly understood. We, therefore, developed an LC-MS/MS assay to identify ELA-32 metabolites in human plasma and tissues. METHOD: Human kidney homogenates or plasma were incubated at 37 °C with ELA-32 and aliquots withdrawn over 2-4 h into guanidine hydrochloride. Proteins were precipitated and supernatant solid-phase extracted. Peptides were extracted from coronary artery, brain and kidney by immunoprecipitation or solid-phase extraction following acidification. All samples were reduced and alkylated before analysis on an Orbitrap mass spectrometer in high and nano flow mode. RESULTS: The half-life of ELA-32 in plasma and kidney were 47.2 ±â€¯5.7 min and 44.2 ±â€¯3 s, respectively. Using PEAKS Studio and manual data analysis, the most important fragments of ELA-32 with potential biological activity identified were ELA-11, ELA-16, ELA-19 and ELA-20. The corresponding fragments resulting from the loss of C-terminal amino acids were also identified. Endogenous levels of these peptides could not be measured, as ELA peptides are prone to oxidation and poor chromatographic peaks. CONCLUSIONS: The relatively long ELA plasma half-life observed and identification of a potentially more stable fragment, ELA-16, may suggest that ELA could be a better tool compound and novel template for the development of new drugs acting at the apelin receptor.


Assuntos
Rim/metabolismo , Hormônios Peptídicos/metabolismo , Espectrometria de Massas em Tandem/métodos , Análise Química do Sangue/métodos , Cromatografia Líquida , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Fragmentos de Peptídeos/análise , Fragmentos de Peptídeos/metabolismo , Hormônios Peptídicos/sangue , Hormônios Peptídicos/isolamento & purificação , Isoformas de Proteínas/sangue , Isoformas de Proteínas/metabolismo , Estabilidade Proteica
8.
Commun Biol ; 4(1): 926, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34326460

RESUMO

Patients with cardiovascular comorbidities are more susceptible to severe infection with SARS-CoV-2, known to directly cause pathological damage to cardiovascular tissue. We outline a screening platform using human embryonic stem cell-derived cardiomyocytes, confirmed to express the protein machinery critical for SARS-CoV-2 infection, and a SARS-CoV-2 spike-pseudotyped virus system. The method has allowed us to identify benztropine and DX600 as novel inhibitors of SARS-CoV-2 infection in a clinically relevant stem cell-derived cardiomyocyte line. Discovery of new medicines will be critical for protecting the heart in patients with SARS-CoV-2, and for individuals where vaccination is contraindicated.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Células-Tronco Embrionárias Humanas/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/virologia , SARS-CoV-2/fisiologia , Benzotropina/farmacologia , Humanos , Miócitos Cardíacos/citologia , Peptídeos/farmacologia
9.
Peptides ; 136: 170440, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33171278

RESUMO

BACKGROUND: The peptide apelin is expressed in human healthy livers and is implicated in the development of hepatic fibrosis and cirrhosis. Mutations in the bone morphogenetic protein receptor type II (BMPR-II) result in reduced plasma levels of apelin in patients with heritable pulmonary arterial hypertension. Ligands for BMPR-II include bone morphogenetic protein 9 (BMP9), highly expressed in liver, and BMP10, expressed in heart and to a lesser extent liver. However, it is not known whether reductions in BMP9 and/or BMP10, with associated reduction in BMPR-II signalling, correlate with altered levels of apelin in patients with liver fibrosis and cirrhosis. METHODS: Plasma from patients with liver fibrosis (n = 14), cirrhosis (n = 56), and healthy controls (n = 25) was solid-phase extracted using a method optimised for recovery of apelin, which was measured by ELISA. RESULTS: Plasma apelin was significantly reduced in liver fibrosis (8.3 ± 1.2 pg/ml) and cirrhosis (6.5 ± 0.6 pg/ml) patients compared with controls (15.4 ± 2.0 pg/ml). There was no obvious relationship between apelin and BMP 9 or BMP10 previously measured in these patients. Within the cirrhotic group, there was no significant correlation between apelin levels and disease severity scores, age, sex, or treatment with ß-blockers. CONCLUSIONS: Apelin was significantly reduced in plasma of patients with both early (fibrosis) and late-stage (cirrhosis) liver disease. Fibrosis is more easily reversible and may represent a potential target for new therapeutic interventions. However, it remains unclear whether apelin signalling is detrimental in liver disease or is beneficial and therefore, whether an apelin antagonist or agonist have clinical use.


Assuntos
Apelina/sangue , Proteínas Morfogenéticas Ósseas/sangue , Fibrose/sangue , Fator 2 de Diferenciação de Crescimento/sangue , Cirrose Hepática/sangue , Adulto , Idoso , Feminino , Fibrose/patologia , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/patologia , Masculino , Pessoa de Meia-Idade
10.
Biomater Sci ; 8(9): 2420-2433, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32236169

RESUMO

In the present work, a copper-tirapazamine (TPZ) nanocomplex [Cu(TPZ)2] was synthesized for selective hypoxia-targeted therapy. The nanocomplex revealed a crystalline form, and exhibited higher lipophilicity, compared to TPZ. Furthermore, its stability was confirmed in different media, with minimum dissociation in serum (∼20% up to 72 h). In contrast to other hypoxia-targeted agents, our intrinsically fluorescent nanocomplex offered an invaluable tool to monitor its cellular uptake and intracellular distribution under both normoxia and hypoxia. The conferred higher cellular uptake of the nanocomplex, especially under hypoxia, and its biocompatible reductive potential resulted in superior hypoxia selectivity in two prostate cancer (PC) cell lines. More promisingly, the nanocomplex showed higher potency in three-dimensional tumor spheroids, compared to TPZ, due to its slower metabolism, and probably deeper penetration in tumor spheroids. Interestingly, the nuclear localization of the intact nanocomplex, combined with its higher DNA binding affinity, as evidenced by the DNA binding assay, resulted in significant S-phase cell-cycle arrest, followed by apoptosis in the three-dimensional spheroid model. In conclusion, the presented findings suggested that the Cu(TPZ)2 nanocomplex can be a promising hypoxia-targeted therapeutic, which could potentiate the efficacy of the existing chemo- and radiotherapy in PC.


Assuntos
Antineoplásicos/administração & dosagem , Cobre/administração & dosagem , Hipóxia , Nanopartículas/administração & dosagem , Neoplasias da Próstata/terapia , Radiossensibilizantes/administração & dosagem , Tirapazamina/administração & dosagem , Transporte Biológico , DNA/metabolismo , Humanos , Masculino , Neoplasias da Próstata/metabolismo , Esferoides Celulares/metabolismo , Células Tumorais Cultivadas
11.
Front Pharmacol ; 11: 588669, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33716722

RESUMO

Signaling through the apelin receptor is beneficial for a number of diseases including pulmonary arterial hypertension. The endogenous small peptides, apelin and elabela/toddler, are downregulated in pulmonary arterial hypertension but are not suitable for exogenous administration owing to a lack of bioavailability, proteolytic instability and susceptibility to renal clearance. CMF-019, a small molecule apelin agonist that displays strong bias towards G protein signaling over ß-arrestin (∼400 fold), may be more suitable. This study demonstrates that in addition to being a positive inotrope, CMF-019 caused dose-dependent vasodilatation in vivo (50 nmol 4.16 ± 1.18 mmHg, **p < 0.01; 500 nmol 6.62 ± 1.85 mmHg, **p < 0.01), without receptor desensitization. Furthermore, CMF-019 rescues human pulmonary artery endothelial cells from apoptosis induced by tumor necrosis factor α and cycloheximide (5.66 ± 0.97%, **p < 0.01) by approximately 50% of that observable with rhVEGF (11.59 ± 1.85%, **p < 0.01), suggesting it has disease-modifying potential in vitro. CMF-019 displays remarkable bias at the apelin receptor for a small molecule and importantly recapitulates all aspects of the cardiovascular responses to the endogenous ligand, [Pyr1]apelin-13, in vivo. Additionally, it is able to protect human pulmonary artery endothelial cells from apoptosis, suggesting that the beneficial effects observed with apelin agonists extend beyond hemodynamic alleviation and address disease etiology itself. These findings support CMF-019 as a G protein biased small molecule apelin agonist in vitro and in vivo that could form the basis for the design of novel therapeutic agents in chronic diseases, such as, pulmonary arterial hypertension.

12.
Basic Clin Pharmacol Toxicol ; 126 Suppl 6: 96-103, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30901161

RESUMO

The apelin receptor is a potential target in the treatment of heart failure and pulmonary arterial hypertension where levels of endogenous apelin peptides are reduced but significant receptor levels remain. Our aim was to characterise the pharmacology of a modified peptide agonist, MM202, designed to have high affinity for the apelin receptor and resistance to peptidase degradation and linked to an anti-serum albumin domain antibody (AlbudAb) to extend half-life in the blood. In competition, binding experiments in human heart MM202-AlbudAb (pKi  = 9.39 ± 0.09) bound with similar high affinity as the endogenous peptides [Pyr1 ]apelin-13 (pKi  = 8.83 ± 0.06) and apelin-17 (pKi  = 9.57 ± 0.08). [Pyr1 ]apelin-13 was tenfold more potent in the cAMP (pD2  = 9.52 ± 0.05) compared to the ß-arrestin (pD2  = 8.53 ± 0.03) assay, whereas apelin-17 (pD2  = 10.31 ± 0.28; pD2  = 10.15 ± 0.13, respectively) and MM202-AlbudAb (pD2  = 9.15 ± 0.12; pD2  = 9.26 ± 0.03, respectively) were equipotent in both assays, with MM202-AlbudAb tenfold less potent than apelin-17. MM202-AlbudAb bound to immobilised human serum albumin with high affinity (pKD  = 9.02). In anaesthetised, male Sprague Dawley rats, MM202-AlbudAb (5 nmol, n = 15) significantly reduced left ventricular systolic pressure by 6.61 ± 1.46 mm Hg and systolic arterial pressure by 14.12 ± 3.35 mm Hg and significantly increased cardiac contractility by 533 ± 170 mm Hg/s, cardiac output by 1277 ± 190 RVU/min, stroke volume by 3.09 ± 0.47 RVU and heart rate by 4.64 ± 2.24 bpm. This study demonstrates that conjugating an apelin mimetic peptide to the AlbudAb structure retains receptor and in vivo activity and may be a new strategy for development of apelin peptides as therapeutic agents.


Assuntos
Receptores de Apelina/agonistas , Apelina/farmacologia , Albumina Sérica/farmacologia , Animais , Receptores de Apelina/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Débito Cardíaco/efeitos dos fármacos , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Masculino , Contração Miocárdica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Acoplados a Proteínas G
13.
Sci Rep ; 9(1): 19934, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882594

RESUMO

[Pyr1]apelin-13 is the predominant apelin peptide isoform in the human cardiovascular system and plasma. To date, few studies have investigated [Pyr1]apelin-13 metabolism in vivo in rats with no studies examining its stability in humans. We therefore aimed to develop an LC-MS/MS method for detection and quantification of intact [Pyr1]apelin-13 and have used this method to identify the metabolites generated in vivo in humans. [Pyr1]apelin-13 (135 nmol/min) was infused into six healthy human volunteers for 120 minutes and blood collected at time 0 and 120 minutes after infusion. Plasma was extracted in the presence of guanidine hydrochloride and analysed by LC-MS/MS. Here we report a highly sensitive, robust and reproducible method for quantification of intact [Pyr1]apelin-13 and its metabolites in human plasma. Using this method, we showed that the circulating concentration of intact peptide was 58.3 ± 10.5 ng/ml after 120 minutes infusion. We demonstrated for the first time that in humans, [Pyr1]apelin-13 was cleaved from both termini but the C-terminal was more susceptible to cleavage. Consequently, of the metabolites identified, [Pyr1]apelin-13(1-12), [Pyr1]apelin-13(1-10) and [Pyr1]apelin-13(1-6) were the most abundant. These data suggest that apelin peptides designed for use as cardiovascular therapeutics, should include modifications that minimise C-terminal cleavage.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/análise , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Espectrometria de Massas em Tandem/métodos , Adulto , Apelina/metabolismo , Receptores de Apelina/metabolismo , Cromatografia Líquida/métodos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeos , Plasma/química , Isoformas de Proteínas/sangue , Reprodutibilidade dos Testes
14.
Pharmacol Rev ; 71(4): 467-502, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31492821

RESUMO

The predicted protein encoded by the APJ gene discovered in 1993 was originally classified as a class A G protein-coupled orphan receptor but was subsequently paired with a novel peptide ligand, apelin-36 in 1998. Substantial research identified a family of shorter peptides activating the apelin receptor, including apelin-17, apelin-13, and [Pyr1]apelin-13, with the latter peptide predominating in human plasma and cardiovascular system. A range of pharmacological tools have been developed, including radiolabeled ligands, analogs with improved plasma stability, peptides, and small molecules including biased agonists and antagonists, leading to the recommendation that the APJ gene be renamed APLNR and encode the apelin receptor protein. Recently, a second endogenous ligand has been identified and called Elabela/Toddler, a 54-amino acid peptide originally identified in the genomes of fish and humans but misclassified as noncoding. This precursor is also able to be cleaved to shorter sequences (32, 21, and 11 amino acids), and all are able to activate the apelin receptor and are blocked by apelin receptor antagonists. This review summarizes the pharmacology of these ligands and the apelin receptor, highlights the emerging physiologic and pathophysiological roles in a number of diseases, and recommends that Elabela/Toddler is a second endogenous peptide ligand of the apelin receptor protein.


Assuntos
Receptores de Apelina/metabolismo , Hormônios Peptídicos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Sequência de Aminoácidos , Animais , Apelina/metabolismo , Apelina/farmacologia , Receptores de Apelina/agonistas , Receptores de Apelina/antagonistas & inibidores , Receptores de Apelina/química , Humanos , Ligantes , Modelos Moleculares , Hormônios Peptídicos/química , Hormônios Peptídicos/farmacologia , Conformação Proteica , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/metabolismo , Distribuição Tecidual
15.
Peptides ; 121: 170139, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31472173

RESUMO

BACKGROUND: Apelin signalling pathways have important cardiovascular and metabolic functions. Recently, apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)], were reported to function independent of the apelin receptor in vivo to produce beneficial metabolic effects without modulating blood pressure. We aimed to show that these peptides bound to the apelin receptor and to further characterise their pharmacology in vitro at the human apelin receptor. METHODS: [Pyr1]apelin-13 saturation binding experiments and competition binding experiments were performed in rat and human heart homogenates using [125I]apelin-13 (0.1 nM), and/or increasing concentrations of apelin-36, apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] (50pM-100µM). Apelin-36 and its analogues apelin-36-[F36A], apelin-36-[L28A], apelin-36-[L28C(30kDa-PEG)], apelin-36-[A28 A13] and [40kDa-PEG]-apelin-36 were tested in forskolin-induced cAMP inhibition and ß-arrestin assays in CHO-K1 cells heterologously expressing the human apelin receptor. Bias signaling was quantified using the operational model for bias. RESULTS: In both species, [Pyr1]apelin-13 had comparable subnanomolar affinity and the apelin receptor density was similar. Apelin-36, apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] competed for binding of [125I]apelin-13 with nanomolar affinities. Apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] inhibited forskolin-induced cAMP release, with nanomolar potencies but they were less potent compared to apelin-36 at recruiting ß-arrestin. Bias analysis suggested that these peptides were G protein biased. Additionally, [40kDa-PEG]-apelin-36 and apelin-36-[F36A] retained nanomolar potencies in both cAMP and ß-arrestin assays whilst apelin-36-[A13 A28] exhibited a similar profile to apelin-36-[L28C(30kDa-PEG)] in the ß-arrestin assay but was more potent in the cAMP assay. CONCLUSIONS: Apelin-36-[L28A] and apelin-36-[L28C(30kDa-PEG)] are G protein biased ligands of the apelin receptor, suggesting that the apelin receptor is an important therapeutic target in metabolic diseases.


Assuntos
Receptores de Apelina/metabolismo , Apelina/metabolismo , Ventrículos do Coração/metabolismo , Peptídeos/metabolismo , beta-Arrestinas/metabolismo , Adulto , Animais , Apelina/química , Apelina/farmacologia , Receptores de Apelina/química , Ligação Competitiva , Células CHO , Colforsina/farmacologia , Misturas Complexas/química , Misturas Complexas/metabolismo , Cricetulus , AMP Cíclico/metabolismo , Feminino , Ventrículos do Coração/química , Humanos , Ligantes , Masculino , Pessoa de Meia-Idade , Peptídeos/síntese química , Peptídeos/farmacologia , Ligação Proteica , Ratos , Ratos Sprague-Dawley
16.
Br J Pharmacol ; 176(9): 1206-1221, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30710493

RESUMO

BACKGROUND AND PURPOSE: Apelin is an endogenous vasodilatory and inotropic peptide that is down-regulated in human pulmonary arterial hypertension, although the density of the apelin receptor is not significantly attenuated. We hypothesised that a G protein-biased apelin analogue MM07, which is more stable than the endogenous apelin peptide, may be beneficial in this condition with the advantage of reduced ß-arrestin-mediated receptor internalisation with chronic use. EXPERIMENTAL APPROACH: Male Sprague-Dawley rats received either monocrotaline to induce pulmonary arterial hypertension or saline and then daily i.p. injections of either MM07 or saline for 21 days. The extent of disease was assessed by right ventricular catheterisation, cardiac MRI, and histological analysis of the pulmonary vasculature. The effect of MM07 on signalling, proliferation, and apoptosis of human pulmonary artery endothelial cells was investigated. KEY RESULTS: MM07 significantly reduced the elevation of right ventricular systolic pressure and hypertrophy induced by monocrotaline. Monocrotaline-induced changes in cardiac structure and function, including right ventricular end-systolic and end-diastolic volumes, ejection fraction, and left ventricular end-diastolic volume, were attenuated by MM07. MM07 also significantly reduced monocrotaline-induced muscularisation of small pulmonary blood vessels. MM07 stimulated endothelial NOS phosphorylation and expression, promoted proliferation, and attenuated apoptosis of human pulmonary arterial endothelial cells in vitro. CONCLUSION AND IMPLICATIONS: Our findings suggest that chronic treatment with MM07 is beneficial in this animal model of pulmonary arterial hypertension by addressing disease aetiology. These data support the development of G protein-biased apelin receptor agonists with improved pharmacokinetic profiles for use in human disease.


Assuntos
Receptores de Apelina/agonistas , Modelos Animais de Doenças , Monocrotalina/farmacologia , Hipertensão Arterial Pulmonar/tratamento farmacológico , Animais , Receptores de Apelina/metabolismo , Masculino , Hipertensão Arterial Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA