Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Immunol ; 8(83): eade2335, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37235682

RESUMO

The ability of most patients with selective immunoglobulin A (IgA) deficiency (SIgAD) to remain apparently healthy has been a persistent clinical conundrum. Compensatory mechanisms, including IgM, have been proposed, yet it remains unclear how secretory IgA and IgM work together in the mucosal system and, on a larger scale, whether the systemic and mucosal anti-commensal responses are redundant or have unique features. To address this gap in knowledge, we developed an integrated host-commensal approach combining microbial flow cytometry and metagenomic sequencing (mFLOW-Seq) to comprehensively define which microbes induce mucosal and systemic antibodies. We coupled this approach with high-dimensional immune profiling to study a cohort of pediatric patients with SIgAD and household control siblings. We found that mucosal and systemic antibody networks cooperate to maintain homeostasis by targeting a common subset of commensal microbes. In IgA-deficiency, we find increased translocation of specific bacterial taxa associated with elevated levels of systemic IgG targeting fecal microbiota. Associated features of immune system dysregulation in IgA-deficient mice and humans included elevated levels of inflammatory cytokines, enhanced follicular CD4 T helper cell frequency and activation, and an altered CD8 T cell activation state. Although SIgAD is clinically defined by the absence of serum IgA, the symptomatology and immune dysregulation were concentrated in the SIgAD participants who were also fecal IgA deficient. These findings reveal that mucosal IgA deficiency leads to aberrant systemic exposures and immune responses to commensal microbes, which increase the likelihood of humoral and cellular immune dysregulation and symptomatic disease in patients with IgA deficiency.


Assuntos
Deficiência de IgA , Humanos , Criança , Camundongos , Animais , Imunoglobulina A Secretora , Imunoglobulina M , Homeostase
2.
Methods Mol Biol ; 2111: 1-20, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31933194

RESUMO

T-cell diversity is multifactorial and includes variability in antigen specificity, differentiation, function, and cell-trafficking potential. Spectral overlap limits the ability of traditional flow cytometry to fully capture the diversity of T-cell subsets and function. The development of mass cytometry permits deep immunoprofiling of T-cell subsets, activation state, and function simultaneously from even small volumes of blood. This chapter describes our methods for mass cytometry and high-throughput data analysis of T cells in patient cohorts. We provide a pipeline that includes practical considerations when customizing a panel for mass cytometry. We also provide protocols for the conjugation and titration of metal-labeled antibodies (including two T-cell panels) and a staining procedure. Finally, with the aim to support translational science, we provide R scripts that contain a detailed workflow for initial evaluation of high-dimensional data generated from cohorts of patients.


Assuntos
Anticorpos/metabolismo , Citometria de Fluxo/métodos , Metais Pesados/química , Subpopulações de Linfócitos T/imunologia , Anticorpos/química , Estudos de Coortes , Ensaios de Triagem em Larga Escala , Humanos , Imunofenotipagem , Ativação Linfocitária , Análise de Célula Única/métodos , Coloração e Rotulagem , Biologia de Sistemas , Fluxo de Trabalho
3.
J Clin Invest ; 129(8): 3185-3200, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31264971

RESUMO

T follicular helper cells (Tfh), a subset of CD4+ T cells, provide requisite help to B cells in the germinal centers (GC) of lymphoid tissue. GC Tfh are identified by high expression of the chemokine receptor CXCR5 and the inhibitory molecule PD-1. Although more accessible, blood contains lower frequencies of CXCR5+ and PD-1+ cells that have been termed circulating Tfh (cTfh). However, it remains unclear whether GC Tfh exit lymphoid tissues and populate this cTfh pool. To examine exiting cells, we assessed the phenotype of Tfh present within the major conduit of efferent lymph from lymphoid tissues into blood, the human thoracic duct. Unlike what was found in blood, we consistently identified a CXCR5-bright PD-1-bright (CXCR5BrPD-1Br) Tfh population in thoracic duct lymph (TDL). These CXCR5BrPD-1Br TDL Tfh shared phenotypic and transcriptional similarities with GC Tfh. Moreover, components of the epigenetic profile of GC Tfh could be detected in CXCR5BrPD-1Br TDL Tfh and the transcriptional imprint of this epigenetic signature was enriched in an activated cTfh subset known to contain vaccine-responding cells. Together with data showing shared TCR sequences between the CXCR5BrPD-1Br TDL Tfh and cTfh, these studies identify a population in TDL as a circulatory intermediate connecting the biology of Tfh in blood to Tfh in lymphoid tissue.


Assuntos
Linfonodos/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Ducto Torácico/imunologia , Animais , Feminino , Humanos , Linfonodos/citologia , Macaca mulatta , Masculino , Receptor de Morte Celular Programada 1/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores CXCR5/imunologia , Linfócitos T Auxiliares-Indutores/citologia , Ducto Torácico/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA