Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659901

RESUMO

Aims: Free fatty acid receptor 4 (Ffar4) is a receptor for long-chain fatty acids that attenuates heart failure driven by increased afterload. Recent findings suggest that Ffar4 prevents ischemic injury in brain, liver, and kidney, and therefore, we hypothesized that Ffar4 would also attenuate cardiac ischemic injury. Methods and Results: Using a mouse model of ischemia-reperfusion (I/R), we found that mice with systemic deletion of Ffar4 (Ffar4KO) demonstrated impaired recovery of left ventricular systolic function post-I/R with no effect on initial infarct size. To identify potential mechanistic explanations for the cardioprotective effects of Ffar4, we performed bulk RNAseq to compare the transcriptomes from wild-type (WT) and Ffar4KO infarcted myocardium 3-days post-I/R. In the Ffar4KO infarcted myocardium, gene ontology (GO) analyses revealed augmentation of glycosaminoglycan synthesis, neutrophil activation, cadherin binding, extracellular matrix, rho signaling, and oxylipin synthesis, but impaired glycolytic and fatty acid metabolism, cardiac repolarization, and phosphodiesterase activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated impaired AMPK signaling and augmented cellular senescence in the Ffar4KO infarcted myocardium. Interestingly, phosphodiesterase 6c (PDE6c), which degrades cGMP, was the most upregulated gene in the Ffar4KO heart. Further, the soluble guanylyl cyclase stimulator, vericiguat, failed to increase cGMP in Ffar4KO cardiac myocytes, suggesting increased phosphodiesterase activity. Finally, cardiac myocyte-specific overexpression of Ffar4 prevented systolic dysfunction post-I/R, defining a cardioprotective role of Ffa4 in cardiac myocytes. Conclusions: Our results demonstrate that Ffar4 in cardiac myocytes attenuates systolic dysfunction post-I/R, potentially by attenuating oxidative stress, preserving mitochondrial function, and modulation of cGMP signaling.

2.
Arterioscler Thromb Vasc Biol ; 44(4): 807-821, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38269589

RESUMO

BACKGROUND: Rheumatic heart disease is the major cause of valvular heart disease in developing nations. Endothelial cells (ECs) are considered crucial contributors to rheumatic heart disease, but greater insight into their roles in disease progression is needed. METHODS: We used a Cdh5-driven EC lineage-tracing approach to identify and track ECs in the K/B.g7 model of autoimmune valvular carditis. Single-cell RNA sequencing was used to characterize the EC populations in control and inflamed mitral valves. Immunostaining and conventional histology were used to evaluate lineage tracing and validate single-cell RNA-sequencing findings. The effects of VEGFR3 (vascular endothelial growth factor receptor 3) and VEGF-C (vascular endothelial growth factor C) inhibitors were tested in vivo. The functional impact of mitral valve disease in the K/B.g7 mouse was evaluated using echocardiography. Finally, to translate our findings, we analyzed valves from human patients with rheumatic heart disease undergoing mitral valve replacements. RESULTS: Lineage tracing in K/B.g7 mice revealed new capillary lymphatic vessels arising from valve surface ECs during the progression of disease in K/B.g7 mice. Unsupervised clustering of mitral valve single-cell RNA-sequencing data revealed novel lymphatic valve ECs that express a transcriptional profile distinct from other valve EC populations including the recently identified PROX1 (Prospero homeobox protein 1)+ lymphatic valve ECs. During disease progression, these newly identified lymphatic valve ECs expand and upregulate a profibrotic transcriptional profile. Inhibiting VEGFR3 through multiple approaches prevented expansion of this mitral valve lymphatic network. Echocardiography demonstrated that K/B.g7 mice have left ventricular dysfunction and mitral valve stenosis. Valve lymphatic density increased with age in K/B.g7 mice and correlated with worsened ventricular dysfunction. Importantly, human rheumatic valves contained similar lymphatics in greater numbers than nonrheumatic controls. CONCLUSIONS: These studies reveal a novel mode of inflammation-associated, VEGFR3-dependent postnatal lymphangiogenesis in murine autoimmune valvular carditis, with similarities to human rheumatic heart disease.


Assuntos
Doenças das Valvas Cardíacas , Vasos Linfáticos , Miocardite , Cardiopatia Reumática , Humanos , Camundongos , Animais , Cardiopatia Reumática/genética , Cardiopatia Reumática/metabolismo , Cardiopatia Reumática/patologia , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Vasos Linfáticos/metabolismo , Doenças das Valvas Cardíacas/patologia , Progressão da Doença , RNA
3.
Circ Cardiovasc Imaging ; 16(10): e015735, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37795649

RESUMO

BACKGROUND: Emerging evidence suggests that atrial myopathy may be the underlying pathophysiology that explains adverse cardiovascular outcomes in heart failure (HF) and atrial fibrillation. Lower left atrial (LA) function (strain) is a key biomarker of atrial myopathy, but murine LA strain has not been described, thus limiting translational investigation. Therefore, the objective of this study was to characterize LA function by speckle-tracking echocardiography in mouse models of atrial myopathy. METHODS: We used 3 models of atrial myopathy in wild-type male and female C57Bl6/J mice: (1) aged 16 to 17 months, (2) Ang II (angiotensin II) infusion, and (3) high-fat diet+Nω-nitro-L-arginine methyl ester (HF with preserved ejection fraction, HFpEF). LA reservoir, conduit, and contractile strain were measured using speckle-tracking echocardiography from a modified parasternal long-axis window. Left ventricular systolic and diastolic function, and global longitudinal strain were also measured. Transesophageal rapid atrial pacing was used to induce atrial fibrillation. RESULTS: LA reservoir, conduit, and contractile strain were significantly reduced in aged, Ang II and HFpEF mice compared with young controls. There were no sex-based interactions. Left ventricular diastolic function and global longitudinal strain were lower in aged, Ang II and HFpEF, but left ventricular ejection fraction was unchanged. Atrial fibrillation inducibility was low in young mice (5%), moderately higher in aged mice (20%), and high in Ang II (75%) and HFpEF (83%) mice. CONCLUSIONS: Using speckle-tracking echocardiography, we observed reduced LA function in established mouse models of atrial myopathy with concurrent atrial fibrillation inducibility, thus providing the field with a timely and clinically relevant platform for understanding the pathophysiology and discovery of novel treatment targets for atrial myopathy.


Assuntos
Fibrilação Atrial , Insuficiência Cardíaca , Doenças Musculares , Masculino , Feminino , Animais , Camundongos , Volume Sistólico/fisiologia , Função Ventricular Esquerda , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/etiologia , Ecocardiografia , Átrios do Coração/diagnóstico por imagem
4.
Artigo em Inglês | MEDLINE | ID: mdl-37285607

RESUMO

Despite their widespread associations with a wide variety of disease phenotypes, the genetics of red blood cell fatty acids remains understudied. We present one of the first genome-wide association studies of red blood cell fatty acid levels, using the Women's Health Initiative Memory study - a prospective cohort of N = 7,479 women aged 65-79. Approximately 9 million SNPs were measured directly or imputed and, in separate linear models adjusted for age and genetic principal components of ethnicity, SNPs were used to predict 28 different fatty acids. SNPs were considered genome-wide significant using a standard genome-wide significance level of p < 1 × 10-8. Twelve separate loci were identified, seven of which replicated results of a prior RBC-FA GWAS. Of the five novel loci, two have functional annotations directly related to fatty acids (ELOVL6 and ACSL6). While overall explained variation is low, the twelve loci identified provide strong evidence of direct relationships between these genes and fatty acid levels. Further studies are needed to establish and confirm the biological mechanisms by which these genes may directly contribute to fatty acid levels.


Assuntos
Ácidos Graxos , Estudo de Associação Genômica Ampla , Feminino , Animais , Estudos Prospectivos , Saúde da Mulher , Eritrócitos , Polimorfismo de Nucleotídeo Único
5.
J Mol Cell Cardiol ; 181: 33-45, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37230379

RESUMO

Transport of Ca2+ into mitochondria is thought to stimulate the production of ATP, a critical process in the heart's fight or flight response, but excess Ca2+ can trigger cell death. The mitochondrial Ca2+ uniporter complex is the primary route of Ca2+ transport into mitochondria, in which the channel-forming protein MCU and the regulatory protein EMRE are essential for activity. In previous studies, chronic Mcu or Emre deletion differed from acute cardiac Mcu deletion in response to adrenergic stimulation and ischemia/reperfusion (I/R) injury, despite equivalent inactivation of rapid mitochondrial Ca2+ uptake. To explore this discrepancy between chronic and acute loss of uniporter activity, we compared short-term and long-term Emre deletion using a novel conditional cardiac-specific, tamoxifen-inducible mouse model. After short-term Emre deletion (3 weeks post-tamoxifen) in adult mice, cardiac mitochondria were unable to take up Ca2+, had lower basal mitochondrial Ca2+ levels, and displayed attenuated Ca2+-induced ATP production and mPTP opening. Moreover, short-term EMRE loss blunted cardiac response to adrenergic stimulation and improved maintenance of cardiac function in an ex vivo I/R model. We then tested whether the long-term absence of EMRE (3 months post-tamoxifen) in adulthood would lead to distinct outcomes. After long-term Emre deletion, mitochondrial Ca2+ handling and function, as well as cardiac response to adrenergic stimulation, were similarly impaired as in short-term deletion. Interestingly, however, protection from I/R injury was lost in the long-term. These data suggest that several months without uniporter function are insufficient to restore bioenergetic response but are sufficient to restore susceptibility to I/R.


Assuntos
Canais de Cálcio , Membranas Mitocondriais , Animais , Camundongos , Trifosfato de Adenosina , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Mitocôndrias Cardíacas/metabolismo , Membranas Mitocondriais/metabolismo
6.
J Lipid Res ; 64(6): 100374, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075982

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome, but a predominant subset of HFpEF patients has metabolic syndrome (MetS). Mechanistically, systemic, nonresolving inflammation associated with MetS might drive HFpEF remodeling. Free fatty acid receptor 4 (Ffar4) is a GPCR for long-chain fatty acids that attenuates metabolic dysfunction and resolves inflammation. Therefore, we hypothesized that Ffar4 would attenuate remodeling in HFpEF secondary to MetS (HFpEF-MetS). To test this hypothesis, mice with systemic deletion of Ffar4 (Ffar4KO) were fed a high-fat/high-sucrose diet with L-NAME in their water to induce HFpEF-MetS. In male Ffar4KO mice, this HFpEF-MetS diet induced similar metabolic deficits but worsened diastolic function and microvascular rarefaction relative to WT mice. Conversely, in female Ffar4KO mice, the diet produced greater obesity but no worsened ventricular remodeling relative to WT mice. In Ffar4KO males, MetS altered the balance of inflammatory oxylipins systemically in HDL and in the heart, decreasing the eicosapentaenoic acid-derived, proresolving oxylipin 18-hydroxyeicosapentaenoic acid (18-HEPE), while increasing the arachidonic acid-derived, proinflammatory oxylipin 12-hydroxyeicosatetraenoic acid (12-HETE). This increased 12-HETE/18-HEPE ratio reflected a more proinflammatory state both systemically and in the heart in male Ffar4KO mice and was associated with increased macrophage numbers in the heart, which in turn correlated with worsened ventricular remodeling. In summary, our data suggest that Ffar4 controls the proinflammatory/proresolving oxylipin balance systemically and in the heart to resolve inflammation and attenuate HFpEF remodeling.


Assuntos
Insuficiência Cardíaca , Síndrome Metabólica , Masculino , Feminino , Camundongos , Animais , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/metabolismo , Oxilipinas , Síndrome Metabólica/complicações , Volume Sistólico/fisiologia , Remodelação Ventricular , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Inflamação/complicações
7.
Aging Cell ; 22(4): e13782, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36734200

RESUMO

Cardiomyopathy is a progressive disease of the myocardium leading to impaired contractility. Genotoxic cancer therapies are known to be potent drivers of cardiomyopathy, whereas causes of spontaneous disease remain unclear. To test the hypothesis that endogenous genotoxic stress contributes to cardiomyopathy, we deleted the DNA repair gene Ercc1 specifically in striated muscle using a floxed allele of Ercc1 and mice expressing Cre under control of the muscle-specific creatinine kinase (Ckmm) promoter or depleted systemically (Ercc1-/D mice). Ckmm-Cre+/- ;Ercc1-/fl mice expired suddenly of heart disease by 7 months of age. As young adults, the hearts of Ckmm-Cre+/- ;Ercc1-/fl mice were structurally and functionally normal, but by 6-months-of-age, there was significant ventricular dilation, wall thinning, interstitial fibrosis, and systolic dysfunction indicative of dilated cardiomyopathy. Cardiac tissue from the tissue-specific or systemic model showed increased apoptosis and cardiac myocytes from Ckmm-Cre+/- ;Ercc1-/fl mice were hypersensitive to genotoxins, resulting in apoptosis. p53 levels and target gene expression, including several antioxidants, were increased in cardiac tissue from Ckmm-Cre+/- ;Ercc1-/fl and Ercc1-/D mice. Despite this, cardiac tissue from older mutant mice showed evidence of increased oxidative stress. Genetic or pharmacologic inhibition of p53 attenuated apoptosis and improved disease markers. Similarly, overexpression of mitochondrial-targeted catalase improved disease markers. Together, these data support the conclusion that DNA damage produced endogenously can drive cardiac disease and does so mechanistically via chronic activation of p53 and increased oxidative stress, driving cardiac myocyte apoptosis, dilated cardiomyopathy, and sudden death.


Assuntos
Cardiomiopatia Dilatada , Miócitos Cardíacos , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Miocárdio/metabolismo , Reparo do DNA
8.
Front Mol Neurosci ; 15: 1007026, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340689

RESUMO

The natriuretic peptide receptors NPR1 and NPR2, also known as guanylyl cyclase A and guanylyl cyclase B, have critical functions in many signaling pathways, but much remains unknown about their localization and function in vivo. To facilitate studies of these proteins, we developed genetically modified mouse lines in which endogenous NPR1 and NPR2 were tagged with the HA epitope. To investigate the role of phosphorylation in regulating NPR1 and NPR2 guanylyl cyclase activity, we developed mouse lines in which regulatory serines and threonines were substituted with glutamates, to mimic the negative charge of the phosphorylated forms (NPR1-8E and NPR2-7E). Here we describe the generation and applications of these mice. We show that the HA-NPR1 and HA-NPR2 mice can be used to characterize the relative expression levels of these proteins in different tissues. We describe studies using the NPR2-7E mice that indicate that dephosphorylation of NPR2 transduces signaling pathways in ovary and bone, and studies using the NPR1-8E mice that indicate that the phosphorylation state of NPR1 is a regulator of heart, testis, and adrenal function.

10.
Physiology (Bethesda) ; 37(6): 311-322, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35944007

RESUMO

A surge in the prevalence of obesity and metabolic syndrome, which promote systemic inflammation, underlies an increase in cardiometabolic disease. Free fatty acid receptor 4 is a nutrient sensor for long-chain fatty acids, like ω3-polyunsaturated fatty acids (ω3-PUFAs), that attenuates metabolic disease and resolves inflammation. Clinical trials indicate ω3-PUFAs are cardioprotective, and this review discusses the mechanistic links between ω3-PUFAs, free fatty acid receptor 4, and attenuation of cardiometabolic disease.


Assuntos
Doenças Cardiovasculares , Ácidos Graxos Ômega-3 , Ácidos Graxos não Esterificados , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/uso terapêutico , Humanos , Inflamação , Transdução de Sinais
11.
FASEB J ; 36(1): e22069, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34859913

RESUMO

Atrial natriuretic peptide (NP) and BNP increase cGMP, which reduces blood pressure and cardiac hypertrophy by activating guanylyl cyclase (GC)-A, also known as NPR-A or Npr1. Although GC-A is highly phosphorylated, and dephosphorylation inactivates the enzyme, the significance of GC-A phosphorylation to heart structure and function remains unknown. To identify in vivo processes that are regulated by GC-A phosphorylation, we substituted glutamates for known phosphorylation sites to make GC-A8E/8E mice that express an enzyme that cannot be inactivated by dephosphorylation. GC-A activity, but not protein, was increased in heart and kidney membranes from GC-A8E/8E mice. Activities were threefold higher in female compared to male cardiac ventricles. Plasma cGMP and testosterone were elevated in male and female GC-A8E/8E mice, but aldosterone was only increased in mutant male mice. Plasma and urinary creatinine concentrations were decreased and increased, respectively, but blood pressure and heart rate were unchanged in male GC-A8E/8E mice. Heart weight to body weight ratios for GC-A8E/8E male, but not female, mice were 12% lower with a 14% reduction in cardiomyocyte cross-sectional area. Subcutaneous injection of fsANP, a long-lived ANP analog, increased plasma cGMP and decreased aldosterone in male GC-AWT/WT and GC-A8E/8E mice at 15 min, but only GC-A8E/8E mice had elevated levels of plasma cGMP and aldosterone at 60 min. fsANP reduced ventricular ERK1/2 phosphorylation to a greater extent and for a longer time in the male mutant compared to WT mice. Finally, ejection fractions were increased in male but not female hearts from GC-A8E/8E mice. We conclude that increased phosphorylation-dependent GC-A activity decreases cardiac ERK activity, which results in smaller male hearts with improved systolic function.


Assuntos
Cardiomegalia , Sistema de Sinalização das MAP Quinases , Fosforilação , Receptores do Fator Natriurético Atrial , Caracteres Sexuais , Animais , Cardiomegalia/enzimologia , Cardiomegalia/genética , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Receptores do Fator Natriurético Atrial/genética , Receptores do Fator Natriurético Atrial/metabolismo
12.
Cardiovasc Res ; 118(4): 1061-1073, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33752243

RESUMO

AIMS: Free fatty acid receptor 4 (Ffar4) is a G-protein-coupled receptor for endogenous medium-/long-chain fatty acids that attenuates metabolic disease and inflammation. However, the function of Ffar4 in the heart is unclear. Given its putative beneficial role, we hypothesized that Ffar4 would protect the heart from pathologic stress. METHODS AND RESULTS: In mice lacking Ffar4 (Ffar4KO), we found that Ffar4 is required for an adaptive response to pressure overload induced by transverse aortic constriction (TAC), identifying a novel cardioprotective function for Ffar4. Following TAC, remodelling was worsened in Ffar4KO hearts, with greater hypertrophy and contractile dysfunction. Transcriptome analysis 3-day post-TAC identified transcriptional deficits in genes associated with cytoplasmic phospholipase A2α signalling and oxylipin synthesis and the reduction of oxidative stress in Ffar4KO myocytes. In cultured adult cardiac myocytes, Ffar4 induced the production of the eicosapentaenoic acid (EPA)-derived, pro-resolving oxylipin 18-hydroxyeicosapentaenoic acid (18-HEPE). Furthermore, the activation of Ffar4 attenuated cardiac myocyte death from oxidative stress, while 18-HEPE rescued Ffar4KO myocytes. Systemically, Ffar4 maintained pro-resolving oxylipins and attenuated autoxidation basally, and increased pro-inflammatory and pro-resolving oxylipins, including 18-HEPE, in high-density lipoproteins post-TAC. In humans, Ffar4 expression decreased in heart failure, while the signalling-deficient Ffar4 R270H polymorphism correlated with eccentric remodelling in a large clinical cohort paralleling changes observed in Ffar4KO mice post-TAC. CONCLUSION: Our data indicate that Ffar4 in cardiac myocytes responds to endogenous fatty acids, reducing oxidative injury, and protecting the heart from pathologic stress, with significant translational implications for targeting Ffar4 in cardiovascular disease.


Assuntos
Ácidos Graxos não Esterificados , Insuficiência Cardíaca , Animais , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/prevenção & controle , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxilipinas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo
14.
Eur Heart J Suppl ; 22(Suppl J): J3-J20, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33061864

RESUMO

Patients with well-controlled low-density lipoprotein cholesterol levels, but persistent high triglycerides, remain at increased risk for cardiovascular events as evidenced by multiple genetic and epidemiologic studies, as well as recent clinical outcome trials. While many trials of low-dose ω3-polyunsaturated fatty acids (ω3-PUFAs), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) have shown mixed results to reduce cardiovascular events, recent trials with high-dose ω3-PUFAs have reignited interest in ω3-PUFAs, particularly EPA, in cardiovascular disease (CVD). REDUCE-IT demonstrated that high-dose EPA (4 g/day icosapent-ethyl) reduced a composite of clinical events by 25% in statin-treated patients with established CVD or diabetes and other cardiovascular risk factors. Outcome trials in similar statin-treated patients using DHA-containing high-dose ω3 formulations have not yet shown the benefits of EPA alone. However, there are data to show that high-dose ω3-PUFAs in patients with acute myocardial infarction had reduced left ventricular remodelling, non-infarct myocardial fibrosis, and systemic inflammation. ω3-polyunsaturated fatty acids, along with their metabolites, such as oxylipins and other lipid mediators, have complex effects on the cardiovascular system. Together they target free fatty acid receptors and peroxisome proliferator-activated receptors in various tissues to modulate inflammation and lipid metabolism. Here, we review these multifactorial mechanisms of ω3-PUFAs in view of recent clinical findings. These findings indicate physico-chemical and biological diversity among ω3-PUFAs that influence tissue distributions as well as disparate effects on membrane organization, rates of lipid oxidation, as well as various receptor-mediated signal transduction pathways and effects on gene expression.

15.
JACC Heart Fail ; 7(8): 651-661, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31302044

RESUMO

OBJECTIVES: The aim of this study was to determine if plasma eicosapentaenoic acid (EPA) abundance (%EPA) is associated with reduced hazard for primary heart failure (HF) events in the MESA (Multi-Ethnic Study of Atherosclerosis) trial. BACKGROUND: Clinical trials suggest that omega-3 polyunsaturated fatty acids (ω3 PUFAs) prevent sudden death in coronary heart disease and HF, but this is controversial. In mice, the authors demonstrated that the ω3 PUFA EPA prevents contractile dysfunction and fibrosis in an HF model, but whether this extends to humans is unclear. METHODS: In the MESA cohort, the authors tested if plasma phospholipid EPA predicts primary HF incidence, including HF with reduced ejection fraction (EF) (EF <45%) and HF with preserved EF (EF ≥45%) using Cox proportional hazards modeling. RESULTS: A total of 6,562 participants 45 to 84 years of age had EPA measured at baseline (1,794 black, 794 Chinese, 1,442 Hispanic, and 2,532 white; 52% women). Over a median follow-up period of 13.0 years, 292 HF events occurred: 128 HF with reduced EF, 110 HF with preserved EF, and 54 with unknown EF status. %EPA in HF-free participants was 0.76% (0.75% to 0.77%) but was lower in participants with HF at 0.69% (0.64% to 0.74%) (p = 0.005). Log %EPA was associated with lower HF incidence (hazard ratio: 0.73 [95% confidence interval: 0.60 to 0.91] per log-unit difference in %EPA; p = 0.001). Adjusting for age, sex, race, body mass index, smoking, diabetes mellitus, blood pressure, lipids and lipid-lowering drugs, albuminuria, and the lead fatty acid for each cluster did not change this relationship. Sensitivity analyses showed no dependence on HF type. CONCLUSIONS: Higher plasma EPA was significantly associated with reduced risk for HF, with both reduced and preserved EF. (Multi-Ethnic Study of Atherosclerosis [MESA]; NCT00005487).


Assuntos
Ácido Eicosapentaenoico/sangue , Insuficiência Cardíaca/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Ácidos Graxos Ômega-3 , Feminino , Insuficiência Cardíaca/sangue , Insuficiência Cardíaca/fisiopatologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Volume Sistólico
16.
J Mol Cell Cardiol ; 127: 67-73, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30528765

RESUMO

G protein-coupled receptors that signal through Gαq (GqPCRs), like α1-adrenergic and angiotensin receptors (α1-AR, AT-R), are traditionally thought to mediate pathologic remodeling in heart failure, including cardiac myocyte death. However, we previously demonstrated that α1- ARs are cardioprotective and identified an α1A-subtype-ERK survival-signaling pathway in adult cardiac myocytes. Recently, we demonstrated that α1-ARs localize to and signal from the nucleus, whereas AT-R localize to and signal from the sarcolemma in adult cardiac myocytes. Thus, we proposed a novel paradigm, predicated on compartmentalization of GqPCR signaling, to explain the phenotypic diversity of GqPCRs. Here, we tested the hypothesis that differential subcellular compartmentalization of α1-AR and AT-R mediated activation of ERK might explain the differential effects of these receptors on cardiac myocyte survival. Using a fluorescent ERK activity FRET-based biosensor, EKAR, to measure subcellular localization and extent of receptor-mediated ERK activation in single adult cardiac myocytes, we found that α1-ARs induced ERK activity at the nucleus and in the cytosol in 60% of cardiac myocytes, whereas AT-Rs showed no consistent ERK activation. The cell-specific α1-mediated activation of ERK in 60% of adult cardiac myocytes showed concordance with previous studies indicating that the α1A-subtype is expressed in only 60% of cardiac myocytes. Consistent with the ability to activate ERK, we found that only α1-ARs induced phosphorylation of Bcl-2 family member Bad, improved mitochondrial membrane stability, and promoted cardiac myocyte survival. In summary, our results suggest that compartmentalization of GqPCRs dictate activation of ERK and cardiac myocyte survival in adult cardiac myocytes.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Sistema de Sinalização das MAP Quinases , Miócitos Cardíacos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Envelhecimento , Animais , Morte Celular , Núcleo Celular/metabolismo , Sobrevivência Celular , Citosol/metabolismo , Feminino , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Fosforilação , Frações Subcelulares/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo
17.
J Biol Chem ; 293(23): 8734-8749, 2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29610273

RESUMO

G protein-coupled receptors that signal through Gαq (Gq receptors), such as α1-adrenergic receptors (α1-ARs) or angiotensin receptors, share a common proximal signaling pathway that activates phospholipase Cß1 (PLCß1), which cleaves phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol 1,4,5-trisphosphate (IP3) and diacylglycerol. Despite these common proximal signaling mechanisms, Gq receptors produce distinct physiological responses, yet the mechanistic basis for this remains unclear. In the heart, Gq receptors are thought to induce myocyte hypertrophy through a mechanism termed excitation-transcription coupling, which provides a mechanistic basis for compartmentalization of calcium required for contraction versus IP3-dependent intranuclear calcium required for hypertrophy. Here, we identified subcellular compartmentalization of Gq-receptor signaling as a mechanistic basis for unique Gq receptor-induced hypertrophic phenotypes in cardiac myocytes. We show that α1-ARs co-localize with PLCß1 and PIP2 at the nuclear membrane. Further, nuclear α1-ARs induced intranuclear PLCß1 activity, leading to histone deacetylase 5 (HDAC5) export and a robust transcriptional response (i.e. significant up- or down-regulation of 806 genes). Conversely, we found that angiotensin receptors localize to the sarcolemma and induce sarcolemmal PLCß1 activity, but fail to promote HDAC5 nuclear export, while producing a transcriptional response that is mostly a subset of α1-AR-induced transcription. In summary, these results link Gq-receptor compartmentalization in cardiac myocytes to unique hypertrophic transcription. They suggest a new model of excitation-transcription coupling in adult cardiac myocytes that accounts for differential Gq-receptor localization and better explains distinct physiological functions of Gq receptors.


Assuntos
Cardiomegalia/patologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Miócitos Cardíacos/patologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfolipase C beta/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Transdução de Sinais , Transporte Ativo do Núcleo Celular , Animais , Cardiomegalia/genética , Cardiomegalia/metabolismo , Núcleo Celular/metabolismo , Núcleo Celular/patologia , Feminino , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/análise , Histona Desacetilases/análise , Histona Desacetilases/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Membrana Nuclear/metabolismo , Membrana Nuclear/patologia , Fenótipo , Fosfatidilinositol 4,5-Difosfato/análise , Fosfolipase C beta/análise , Receptores Adrenérgicos alfa 1/análise , Sarcolema/metabolismo , Sarcolema/patologia , Ativação Transcricional
18.
J Mol Cell Cardiol ; 103: 74-92, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27986444

RESUMO

Heart failure (HF) affects 5.7 million in the U.S., and despite well-established pharmacologic therapy, the 5-year mortality rate remains near 50%. Furthermore, the mortality rate for HF has not declined in years, highlighting the need for new therapeutic options. Omega-3 polyunsaturated fatty acids (ω3-PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are important regulators of cardiovascular health. However, questions of efficacy and mechanism of action have made the use of ω3-PUFAs in all cardiovascular disease (CVD) controversial. Here, we review recent studies in animal models of HF indicating that ω3-PUFAs, particularly EPA, are cardioprotective, with the results indicating a threshold for efficacy. We also examine clinical studies suggesting that ω3-PUFAs improve outcomes in patients with HF. Due to the relatively small number of clinical studies of ω3-PUFAs in HF, we discuss EPA concentration-dependency on outcomes in clinical trials of CVD to gain insight into the perceived questionable efficacy of ω3-PUFAs clinically, with the results again indicating a threshold for efficacy. Ultimately, we suggest that the main failing of ω3-PUFAs in clinical trials might be a failure to reach a therapeutically effective concentration. We also examine mechanistic studies suggesting that ω3-PUFAs signal through free fatty acid receptor 4 (Ffar4), a G-protein coupled receptor (GPR) for long-chain fatty acids (FA), thereby identifying an entirely novel mechanism of action for ω3-PUFA mediated cardioprotection. Finally, based on mechanistic animal studies suggesting that EPA prevents interstitial fibrosis and diastolic dysfunction, we speculate about a potential benefit for EPA-Ffar4 signaling in heart failure preserved with ejection fraction.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/metabolismo , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Ensaios Clínicos como Assunto , Suplementos Nutricionais , Modelos Animais de Doenças , Fibrose , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/etiologia , Humanos , Terapia de Alvo Molecular , Remodelação Ventricular/efeitos dos fármacos
20.
J Lipid Res ; 56(12): 2297-308, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26435012

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is half of all HF, but standard HF therapies are ineffective. Diastolic dysfunction, often secondary to interstitial fibrosis, is common in HFpEF. Previously, we found that supra-physiologic levels of ω3-PUFAs produced by 12 weeks of ω3-dietary supplementation prevented fibrosis and contractile dysfunction following pressure overload [transverse aortic constriction (TAC)], a model that resembles aspects of remodeling in HFpEF. This raised several questions regarding ω3-concentration-dependent cardioprotection, the specific role of EPA and DHA, and the relationship between prevention of fibrosis and contractile dysfunction. To achieve more clinically relevant ω3-levels and test individual ω3-PUFAs, we shortened the ω3-diet regimen and used EPA- and DHA-specific diets to examine remodeling following TAC. The shorter diet regimen produced ω3-PUFA levels closer to Western clinics. Further, EPA, but not DHA, prevented fibrosis following TAC. However, neither ω3-PUFA prevented contractile dysfunction, perhaps due to reduced uptake of ω3-PUFA. Interestingly, EPA did not accumulate in cardiac fibroblasts. However, FFA receptor 4, a G protein-coupled receptor for ω3-PUFAs, was sufficient and required to block transforming growth factor ß1-fibrotic signaling in cultured cardiac fibroblasts, suggesting a novel mechanism for EPA. In summary, EPA-mediated prevention of fibrosis could represent a novel therapy for HFpEF.


Assuntos
Ácidos Docosa-Hexaenoicos/uso terapêutico , Ácido Eicosapentaenoico/uso terapêutico , Ácidos Graxos não Esterificados/uso terapêutico , Fibrose/prevenção & controle , Insuficiência Cardíaca/prevenção & controle , Animais , Suplementos Nutricionais , Camundongos , Distribuição Aleatória , Receptores Acoplados a Proteínas G/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA