Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(1): e2213715120, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36577072

RESUMO

The nuclear long non-coding RNA LUCAT1 has previously been identified as a negative feedback regulator of type I interferon and inflammatory cytokine expression in human myeloid cells. Here, we define the mechanistic basis for the suppression of inflammatory gene expression by LUCAT1. Using comprehensive identification of RNA-binding proteins by mass spectrometry as well as RNA immunoprecipitation, we identified proteins important in processing and alternative splicing of mRNAs as LUCAT1-binding proteins. These included heterogeneous nuclear ribonucleoprotein C, M, and A2B1. Consistent with this finding, cells lacking LUCAT1 have altered splicing of selected immune genes. In particular, upon lipopolysaccharide stimulation, the splicing of the nuclear receptor 4A2 (NR4A2) gene was particularly affected. As a consequence, expression of NR4A2 was reduced and delayed in cells lacking LUCAT1. NR4A2-deficient cells had elevated expression of immune genes. These observations suggest that LUCAT1 is induced to control the splicing and stability of NR4A2, which is in part responsible for the anti-inflammatory effect of LUCAT1. Furthermore, we analyzed a large cohort of patients with inflammatory bowel disease as well as asthma and chronic obstructive pulmonary disease. In these patients, LUCAT1 levels were elevated and in both diseases, positively correlated with disease severity. Collectively, these studies define a key molecular mechanism of LUCAT1-dependent immune regulation through post-transcriptional regulation of mRNAs highlighting its role in the regulation of inflammatory disease.


Assuntos
Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares , RNA Longo não Codificante , Humanos , Movimento Celular , Proliferação de Células , Inflamação/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Receptores Citoplasmáticos e Nucleares , RNA Longo não Codificante/metabolismo , Splicing de RNA , Estabilidade de RNA
2.
Immunohorizons ; 3(1): 13-25, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31356173

RESUMO

Inhibitory receptors (IR) are a diverse group of cell surface molecules that modulate T cell activation, but there are gaps in our knowledge of the cell-extrinsic factors that regulate their expression. The present study found that in vivo overexpression of IL-27 in mice led to increased T cell expression of PD-L1, LAG-3, TIGIT, and TIM-3. In vitro, TCR stimulation alone promoted expression of multiple IRs, whereas IL-27 alone induced expression of PD-L1. However, the combination of intermediate TCR stimulation and IL-27 resulted in synergistic induction of LAG-3, CTLA-4, and TIGIT. In vivo, infection with Toxoplasma gondii resulted in parasite-specific effector T cells that expressed high levels of IR, and at local sites of infection where IL-27 production was highest, IL-27 was required for maximal effector cell expression of PD-L1, LAG-3, CTLA-4, and TIGIT. Together, these results affirm the critical role of TCR signals in the induction of IR expression but find that during infection, IL-27 promotes T cell expression of IR.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Receptores Coestimuladores e Inibidores de Linfócitos T/metabolismo , Interleucinas/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Animais , Antígeno B7-H1/metabolismo , Linfócitos T CD4-Positivos/parasitologia , Linfócitos T CD8-Positivos/parasitologia , Antígeno CTLA-4/metabolismo , Receptores Coestimuladores e Inibidores de Linfócitos T/genética , Feminino , Interleucinas/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/genética , Receptores Imunológicos/metabolismo , Baço/patologia , Toxoplasma , Toxoplasmose/imunologia , Transcriptoma , Transfecção
4.
Nat Immunol ; 20(3): 374, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30705416

RESUMO

In the version of this article initially published, a word ("neutraling") in sentence 2 of paragraph 5 is incorrect. The correct phrase is "...neutralizing properties...". The error has been corrected in the HTML and PDF version of the article.

5.
J Immunol ; 198(10): 4054-4061, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28389591

RESUMO

Regulatory T cells (Tregs) play an important role in the CNS during multiple infections, as well as autoimmune inflammation, but the behavior of this cell type in the CNS has not been explored. In mice, infection with Toxoplasma gondii leads to a Th1-polarized parasite-specific effector T cell response in the brain. Similarly, Tregs in the CNS during T. gondii infection are Th1 polarized, as exemplified by their T-bet, CXCR3, and IFN-γ expression. Unlike effector CD4+ T cells, an MHC class II tetramer reagent specific for T. gondii did not recognize Tregs isolated from the CNS. Likewise, TCR sequencing revealed minimal overlap in TCR sequence between effector T cells and Tregs in the CNS. Whereas effector T cells are found in the brain parenchyma where parasites are present, Tregs were restricted to the meninges and perivascular spaces. The use of intravital imaging revealed that activated CD4+ T cells within the meninges were highly migratory, whereas Tregs moved more slowly and were found in close association with CD11c+ cells. To test whether the behavior of Tregs in the meninges is influenced by interactions with CD11c+ cells, mice were treated with anti-LFA-1 Abs to reduce the number of CD11c+ cells in this space. The anti-LFA-1 treatment led to fewer contacts between Tregs and the remaining CD11c+ cells and increased the speed of Treg migration. These data suggest that Tregs are anatomically restricted within the CNS, and their interaction with CD11c+ populations regulates their local behavior during T. gondii infection.


Assuntos
Antígeno CD11c/imunologia , Meninges/imunologia , Linfócitos T Reguladores/fisiologia , Toxoplasmose Cerebral/imunologia , Animais , Antígeno CD11c/genética , Antígeno CD11c/metabolismo , Linfócitos T CD4-Positivos/imunologia , Movimento Celular , Microscopia Intravital , Ativação Linfocitária , Camundongos , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Toxoplasma/imunologia
6.
PLoS Pathog ; 11(2): e1004635, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25658840

RESUMO

IFNγ signaling drives dendritic cells (DCs) to promote type I T cell (Th1) immunity. Here, we show that activation of DCs by IFNγ is equally crucial for the differentiation of a population of T-bet+ regulatory T (Treg) cells specialized to inhibit Th1 immune responses. Conditional deletion of IFNγ receptor in DCs but not in Treg cells resulted in a severe defect in this specific Treg cell subset, leading to exacerbated immune pathology during parasitic infections. Mechanistically, IFNγ-unresponsive DCs failed to produce sufficient amount of IL-27, a cytokine required for optimal T-bet induction in Treg cells. Thus, IFNγ signalling endows DCs with the ability to efficiently control a specific type of T cell immunity through promoting a corresponding Treg cell population.


Assuntos
Diferenciação Celular/imunologia , Células Dendríticas/imunologia , Interferon gama/imunologia , Linfócitos T Reguladores/imunologia , Toxoplasmose/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Inflamação/imunologia , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/imunologia , Proteínas com Domínio T/imunologia , Linfócitos T Reguladores/citologia , Células Th1/citologia , Células Th1/imunologia
7.
J Immunol ; 189(5): 2079-83, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22837488

RESUMO

GM-CSF is a potent proinflammatory cytokine that plays a pathogenic role in the CNS inflammatory disease experimental autoimmune encephalomyelitis. As IL-27 alleviates experimental autoimmune encephalomyelitis, we hypothesized that IL-27 suppresses GM-CSF expression by T cells. We found that IL-27 suppressed GM-CSF expression in CD4+ and CD8+ T cells in splenocyte and purified T cell cultures. IL-27 suppressed GM-CSF in Th1, but not Th17, cells. IL-27 also suppressed GM-CSF expression by human T cells in nonpolarized and Th1- but not Th17-polarized PBMC cultures. In vivo, IL-27p28 deficiency resulted in increased GM-CSF expression by CNS-infiltrating T cells during Toxoplasma gondii infection. Although in vitro suppression of GM-CSF by IL-27 was independent of IL-2 suppression, IL-10 upregulation, or SOCS3 signaling, we observed that IL-27-driven suppression of GM-CSF was STAT1 dependent. Our findings demonstrate that IL-27 is a robust negative regulator of GM-CSF expression in T cells, which likely inhibits T cell pathogenicity in CNS inflammation.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Fator Estimulador de Colônias de Granulócitos e Macrófagos/biossíntese , Tolerância Imunológica , Interleucina-17/fisiologia , Subpopulações de Linfócitos T/imunologia , Animais , Polaridade Celular/genética , Polaridade Celular/imunologia , Células Cultivadas , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Tolerância Imunológica/genética , Mediadores da Inflamação/farmacologia , Mediadores da Inflamação/fisiologia , Interleucina-17/farmacologia , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Toxoplasmose/imunologia , Toxoplasmose/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA