Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
EBioMedicine ; 100: 104949, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199043

RESUMO

BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are neurodevelopmental conditions with early life origins. Alterations in blood lipids have been linked to ADHD and ASD; however, prospective early life data are limited. This study examined (i) associations between the cord blood lipidome and ADHD/ASD symptoms at 2 years of age, (ii) associations between prenatal and perinatal predictors of ADHD/ASD symptoms and cord blood lipidome, and (iii) mediation by the cord blood lipidome. METHODS: From the Barwon Infant Study cohort (1074 mother-child pairs, 52.3% male children), child circulating lipid levels at birth were analysed using ultra-high-performance liquid chromatography-tandem mass spectrometry. These were clustered into lipid network modules via Weighted Gene Correlation Network Analysis. Associations between lipid modules and ADHD/ASD symptoms at 2 years, assessed with the Child Behavior Checklist, were explored via linear regression analyses. Mediation analysis identified indirect effects of prenatal and perinatal risk factors on ADHD/ASD symptoms through lipid modules. FINDINGS: The acylcarnitine lipid module is associated with both ADHD and ASD symptoms at 2 years of age. Risk factors of these outcomes such as low income, Apgar score, and maternal inflammation were partly mediated by higher birth acylcarnitine levels. Other cord blood lipid profiles were also associated with ADHD and ASD symptoms. INTERPRETATION: This study highlights that elevated cord blood birth acylcarnitine levels, either directly or as a possible marker of disrupted cell energy metabolism, are on the causal pathway of prenatal and perinatal risk factors for ADHD and ASD symptoms in early life. FUNDING: The foundational work and infrastructure for the BIS was sponsored by the Murdoch Children's Research Institute, Deakin University, and Barwon Health. Subsequent funding was secured from the Minderoo Foundation, the European Union's Horizon 2020 research and innovation programme (ENDpoiNTs: No 825759), National Health and Medical Research Council of Australia (NHMRC) and Agency for Science, Technology and Research Singapore [APP1149047], The William and Vera Ellen Houston Memorial Trust Fund (via HOMER Hack), The Shepherd Foundation, The Jack Brockhoff Foundation, the Scobie & Claire McKinnon Trust, the Shane O'Brien Memorial Asthma Foundation, the Our Women Our Children's Fund Raising Committee Barwon Health, the Rotary Club of Geelong, the Ilhan Food Allergy Foundation, Geelong Medical and Hospital Benefits Association, Vanguard Investments Australia Ltd, the Percy Baxter Charitable Trust, and Perpetual Trustees.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Carnitina/análogos & derivados , Lactente , Recém-Nascido , Humanos , Masculino , Feminino , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/etiologia , Estudos de Coortes , Transtorno do Deficit de Atenção com Hiperatividade/epidemiologia , Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Sangue Fetal , Estudos Prospectivos , Lipídeos
2.
Mol Psychiatry ; 28(9): 3760-3768, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37845496

RESUMO

Childhood mental disorders, including emotional and behavioural problems (EBP) are increasingly prevalent. Higher maternal oxidative stress (OS) during pregnancy (matOSpreg) is linked to offspring mental disorders. Environmental factors contribute to matOSpreg. However, the role of matOSpreg in childhood EBP is unclear. We investigated the associations between (i) matOSpreg and offspring EBP; (ii) social and prenatal environmental factors and matOSpreg; and (iii) social and prenatal factors and childhood EBP and evaluated whether matOSpreg mediated these associations. Maternal urinary OS biomarkers, 8-hydroxyguanosine (8-OHGua; an oxidative RNA damage marker) and 8-hydroxy-2'-deoxyguanosine (8-OHdG; an oxidative DNA damage marker), at 36 weeks of pregnancy were quantified by liquid chromatography-mass spectrometry in a population-derived birth cohort, Barwon Infant Study (n = 1074 mother-infant pairs). Social and prenatal environmental factors were collected by mother-reported questionnaires. Offspring total EBP was measured by Child Behavior Checklist Total Problems T-scores at age two (n = 675) and Strengths and Difficulties Questionnaire Total Difficulties score at age four (n = 791). Prospective associations were examined by multivariable regression analyses adjusted for covariates. Mediation effects were evaluated using counterfactual-based mediation analysis. Higher maternal urinary 8-OHGua at 36 weeks (mat8-OHGua36w) was associated with greater offspring total EBP at age four (ß = 0.38, 95% CI (0.07, 0.69), P = 0.02) and age two (ß = 0.62, 95% CI (-0.06, 1.30), P = 0.07). Weaker evidence of association was detected for 8-OHdG. Five early-life factors were associated with both mat8-OHGua36w and childhood EBP (P-range < 0.001-0.05), including lower maternal education, socioeconomic disadvantage and prenatal tobacco smoking. These risk factor-childhood EBP associations were partly mediated by higher mat8-OHGua36w (P-range = 0.01-0.05). Higher matOSpreg, particularly oxidant RNA damage, is associated with later offspring EBP. Effects of some social and prenatal lifestyle factors on childhood EBP were partly mediated by matOSpreg. Future studies are warranted to further elucidate the role of early-life oxidant damage in childhood EBP.


Assuntos
Efeitos Tardios da Exposição Pré-Natal , Comportamento Problema , Gravidez , Feminino , Lactente , Humanos , Pré-Escolar , Comportamento Problema/psicologia , Mães/psicologia , Oxidantes , RNA
3.
Brain Behav Immun ; 113: 189-202, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37437818

RESUMO

BACKGROUND: Pre-pregnancy obesity is an emerging risk factor for perinatal depression. However, the underlying mechanisms remain unclear. We investigated the association between pre-pregnancy body mass index (BMI) and perinatal depressive symptoms in a large population-based pre-birth cohort, the Barwon Infant Study. We also assessed whether the levels of circulating inflammatory markers during pregnancy mediated this relationship. METHODS: Depressive symptoms were assessed in 883 women using the Edinburgh Postnatal Depression Scale (EPDS) and psychological stress using the Perceived Stress Scale (PSS) at 28 weeks gestation and 4 weeks postpartum. Glycoprotein acetyls (GlycA), high-sensitivity C-reactive protein (hsCRP) and cytokines were assessed at 28 weeks gestation. We performed regression analyses, adjusted for potential confounders, and investigated mediation using nested counterfactual models. RESULTS: The estimated effect of pre-pregnancy obesity (BMI ≥ 30 kg/m2) on antenatal EPDS scores was 1.05 points per kg/m2 increase in BMI (95% CI: 0.20, 1.90; p = 0.02). GlycA, hsCRP, interleukin (IL) -1ra and IL-6 were higher in women with obesity, compared to healthy weight women, while eotaxin and IL-4 were lower. Higher GlycA was associated with higher EPDS and PSS scores and partially mediated the association between pre-pregnancy obesity and EPDS/PSS scores in unadjusted models, but this association attenuated upon adjustment for socioeconomic adversity. IL-6 and eotaxin were negatively associated with EPDS/PSS scores, however there was no evidence for mediation. CONCLUSIONS: Pre-pregnancy obesity increases the risk of antenatal depressive symptoms and is also associated with systemic inflammation during pregnancy. While discrete inflammatory markers are associated with antenatal depressive symptoms and perceived stress, their role in mediating the effects of pre-pregnancy obesity on antenatal depression requires further investigation.


Assuntos
Depressão Pós-Parto , Complicações na Gravidez , Lactente , Feminino , Gravidez , Humanos , Depressão/diagnóstico , Proteína C-Reativa , Interleucina-6 , Obesidade/complicações , Fatores de Risco , Inflamação , Complicações na Gravidez/psicologia
4.
Eur J Nutr ; 62(7): 2855-2872, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37378694

RESUMO

BACKGROUND: Maternal dietary choline has a central role in foetal brain development and may be associated with later cognitive function. However, many countries are reporting lower than recommended intake of choline during pregnancy. METHODS: Dietary choline was estimated using food frequency questionnaires in pregnant women participating in population-derived birth cohort, the Barwon Infant Study (BIS). Dietary choline is reported as the sum of all choline-containing moieties. Serum total choline-containing compounds (choline-c), phosphatidylcholine and sphingomyelin were measured using nuclear magnetic resonance metabolomics in the third trimester. The main form of analysis was multivariable linear regression. RESULTS: The mean daily dietary choline during pregnancy was 372 (standard deviation (SD) 104) mg/day. A total of 236 women (23%) had adequate choline intake (440 mg/day) based on the Australian and New Zealand guidelines, and 27 women (2.6%) took supplemental choline ([Formula: see text] 50 mg/dose) daily during pregnancy. The mean serum choline-c in pregnant women was 3.27 (SD 0.44) mmol/l. Ingested choline and serum choline-c were not correlated (R2) = - 0.005, p = 0.880. Maternal age, maternal weight gain in pregnancy, and a pregnancy with more than one infant were associated with higher serum choline-c, whereas gestational diabetes and environmental tobacco smoke during preconception and pregnancy were associated with lower serum choline-c. Nutrients or dietary patterns were not associated with variation in serum choline-c. CONCLUSION: In this cohort, approximately one-quarter of women met daily choline recommendations during pregnancy. Future studies are needed to understand the potential impact of low dietary choline intake during pregnancy on infant cognition and metabolic intermediaries.


Assuntos
Colina , Ingestão de Alimentos , Lactente , Humanos , Feminino , Gravidez , Austrália , Dieta , Gestantes
5.
J Allergy Clin Immunol ; 152(3): 667-675, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37150361

RESUMO

BACKGROUND: The mechanisms underlying the protective effect of older siblings on allergic disease remain unclear but may relate to the infant gut microbiota. OBJECTIVE: We sought to investigate whether having older siblings decreases the risk of IgE-mediated food allergy by accelerating the maturation of the infant gut microbiota. METHODS: In a birth cohort assembled using an unselected antenatal sampling frame (n = 1074), fecal samples were collected at 1 month, 6 months, and 1 year, and food allergy status at 1 year was determined by skin prick test and in-hospital food challenge. We used 16S rRNA gene amplicon sequencing to derive amplicon sequence variants. Among a random subcohort (n = 323), microbiota-by-age z scores at each time point were calculated using fecal amplicon sequence variants to represent the gut microbiota maturation over the first year of life. RESULTS: A greater number of siblings was associated with a higher microbiota-by-age z score at age 1 year (ß  = 0.15 per an additional sibling; 95% CI, 0.05-0.24; P = .003), which was in turn associated with decreased odds of food allergy (odds ratio, 0.45; 95% CI, 0.33-0.61; P < .001). Microbiota-by-age z scores mediated 63% of the protective effect of siblings. Analogous associations were not observed at younger ages. CONCLUSIONS: The protective effect of older siblings on the risk of developing IgE-mediated food allergy during infancy is substantially mediated by advanced maturation of the gut microbiota at age 1 year.


Assuntos
Hipersensibilidade Alimentar , Microbioma Gastrointestinal , Gravidez , Lactente , Humanos , Feminino , Irmãos , RNA Ribossômico 16S/genética , Hipersensibilidade Alimentar/prevenção & controle , Imunoglobulina E
6.
Am J Clin Nutr ; 117(5): 930-945, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36813025

RESUMO

BACKGROUND: Human milk oligosaccharides (HMOs) are major components of human milk that may mediate its beneficial effects on infant growth. OBJECTIVES: To investigate relationships between HMO concentrations in milk at 6 wk postpartum and anthropometry to 4 y of age in human milk-fed infants. METHODS: Milk samples were collected from 292 mothers at 6 wk (median 6.0 wk; range 3.3, 11.1] postpartum in a longitudinal, population-derived cohort. Of the infants, 171 were exclusively human milk-fed to 3 mo of age and 127 to 6 mo. Concentrations of 19 HMOs were quantified using high-performance liquid chromatography. Maternal secretor status (n = 221 secretors) was determined from 2'-fucosyllactose (2'FL) concentration. We calculated z-scores for child weight, length, head circumference, summed triceps and subscapular skinfold thicknesses, and weight-for-length at 6 wk, 6 mo, 12 mo, and 4 y. We investigated associations of secretor status and each HMO measure with change from birth for each z-score using linear mixed-effects models. RESULTS: Maternal secretor status was not associated with anthropometric z-scores up to 4 y of age. Several HMOs were associated with z-scores at 6 wk and 6 mo, predominantly within secretor status subgroups. Higher levels of 2'FL were associated with greater weight [ß = 0.91 increase in z-score per SD increase log-2'FL, 95% CI (0.17, 1.65)] and length [ß = 1.22, (0.25, 2.20)] in children born to secretor mothers, but not body composition measures. Higher lacto-N-tetraose was associated with greater weight [ß = 0.22, (0.02, 0.41)] and length (ß = 0.30, (0.07, 0.53)] among children born to nonsecretor mothers. Several HMOs were associated with anthropometric measures at 12 mo and 4 y of age. CONCLUSIONS: Milk HMO composition at 6 wk postpartum is associated with several anthropometry measures up to 6 mo of age in a potential secretor status-specific manner, with largely different HMOs associating with anthropometry from 12 mo to 4 y of age.


Assuntos
Leite Humano , Oligossacarídeos , Lactente , Feminino , Criança , Humanos , Leite Humano/química , Oligossacarídeos/análise , Mães , Tamanho Corporal , Período Pós-Parto
7.
Environ Int ; 171: 107678, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516674

RESUMO

Prenatal phthalate exposure has previously been linked to the development of autism spectrum disorder (ASD). However, the underlying biological mechanisms remain unclear. We investigated whether maternal and child central carbon metabolism is involved as part of the Barwon Infant Study (BIS), a population-based birth cohort of 1,074 Australian children. We estimated phthalate daily intakes using third-trimester urinary phthalate metabolite concentrations and other relevant indices. The metabolome of maternal serum in the third trimester, cord serum at birth and child plasma at 1 year were measured by nuclear magnetic resonance. We used the Small Molecule Pathway Database and principal component analysis to construct composite metabolite scores reflecting metabolic pathways. ASD symptoms at 2 and 4 years were measured in 596 and 674 children by subscales of the Child Behavior Checklist and the Strengths and Difficulties Questionnaire, respectively. Multivariable linear regression analyses demonstrated (i) prospective associations between higher prenatal di-(2-ethylhexyl) phthalate (DEHP) levels and upregulation of maternal non-oxidative energy metabolism pathways, and (ii) prospective associations between upregulation of these pathways and increased offspring ASD symptoms at 2 and 4 years of age. Counterfactual mediation analyses indicated that part of the mechanism by which higher prenatal DEHP exposure influences the development of ASD symptoms in early childhood is through a maternal metabolic shift in pregnancy towards non-oxidative energy pathways, which are inefficient compared to oxidative metabolism. These results highlight the importance of the prenatal period and suggest that further investigation of maternal energy metabolism as a molecular mediator of the adverse impact of prenatal environmental exposures such as phthalates is warranted.


Assuntos
Transtorno do Espectro Autista , Dietilexilftalato , Poluentes Ambientais , Ácidos Ftálicos , Efeitos Tardios da Exposição Pré-Natal , Criança , Gravidez , Lactente , Recém-Nascido , Feminino , Humanos , Pré-Escolar , Estudos de Coortes , Dietilexilftalato/toxicidade , Transtorno do Espectro Autista/induzido quimicamente , Poluentes Ambientais/toxicidade , Austrália , Ácidos Ftálicos/toxicidade , Ácidos Ftálicos/análise , Exposição Ambiental/análise , Metabolismo Energético , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Exposição Materna/efeitos adversos
8.
Front Immunol ; 13: 986340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211431

RESUMO

Background: Preclinical studies have shown that maternal gut microbiota during pregnancy play a key role in prenatal immune development but the relevance of these findings to humans is unknown. The aim of this prebirth cohort study was to investigate the association between the maternal gut microbiota in pregnancy and the composition of the infant's cord and peripheral blood immune cells over the first year of life. Methods: The Barwon Infant Study cohort (n=1074 infants) was recruited using an unselected sampling frame. Maternal fecal samples were collected at 36 weeks of pregnancy and flow cytometry was conducted on cord/peripheral blood collected at birth, 6 and 12 months of age. Among a randomly selected sub-cohort with available samples (n=293), maternal gut microbiota was characterized by sequencing the 16S rRNA V4 region. Operational taxonomic units (OTUs) were clustered based on their abundance. Associations between maternal fecal microbiota clusters and infant granulocyte, monocyte and lymphocyte subsets were explored using compositional data analysis. Partial least squares (PLS) and regression models were used to investigate the relationships/associations between environmental, maternal and infant factors, and OTU clusters. Results: We identified six clusters of co-occurring OTUs. The first two components in the PLS regression explained 39% and 33% of the covariance between the maternal prenatal OTU clusters and immune cell populations in offspring at birth. A cluster in which Dialister, Escherichia, and Ruminococcus were predominant was associated with a lower proportion of granulocytes (p=0.002), and higher proportions of both central naïve CD4+ T cells (CD4+/CD45RA+/CD31-) (p<0.001) and naïve regulatory T cells (Treg) (CD4+/CD45RA+/FoxP3low) (p=0.02) in cord blood. The association with central naïve CD4+ T cells persisted to 12 months of age. Conclusion: This birth cohort study provides evidence consistent with past preclinical models that the maternal gut microbiota during pregnancy plays a role in shaping the composition of innate and adaptive elements of the infant's immune system following birth.


Assuntos
Microbioma Gastrointestinal , Estudos de Coortes , Fezes , Feminino , Fatores de Transcrição Forkhead , Microbioma Gastrointestinal/genética , Humanos , Lactente , Recém-Nascido , Gravidez , RNA Ribossômico 16S/genética
9.
Pediatr Allergy Immunol ; 33(6): e13810, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35754137

RESUMO

BACKGROUND: Children born to larger households have less allergic disease. T regulatory cell (Treg) development may be a relevant mechanism, but this has not been studied longitudinally. OBJECTIVE: We aim to (i) describe how prenatal and postnatal environmental factors are associated with Treg development and (ii) investigate whether serial Treg measures predict allergic outcomes at 1 year of age. METHODS: A birth cohort (n = 1074) with information on prenatal and postnatal early life factors. Both naïve Treg (nTreg) and activated Treg (aTreg) cell populations (as a proportion of CD4+ T cells) were available in 463 infants at birth (cord blood), 600 at 6 months, and 675 at 12 months. 191 infants had serial measures. Measures of allergic status at 12 months were polysensitization (sensitization to 2 or more allergens), clinically proven food allergy, atopic eczema, and atopic wheeze. RESULTS: Infants born to larger households (3 or more residents) had higher longitudinal nTreg proportions over the first postnatal year with a mean difference (MD) of 0.67 (95% CI 0.30-1.04)%. Higher nTreg proportions at birth were associated with a reduced risk of infant allergic outcomes. Childcare attendance and breastfeeding were associated with higher longitudinal nTreg proportions (MD 0.48 (95% CI 0.08-0.80)%. CONCLUSION: Multiple prenatal and postnatal microbial factors are associated with nTreg and aTreg development. Larger household size was associated with higher nTreg at birth which in turn was associated with reduced allergic sensitization and disease at 12 months of age.


Assuntos
Dermatite Atópica , Hipersensibilidade Alimentar , Coorte de Nascimento , Criança , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Gravidez , Linfócitos T Reguladores
10.
Int J Mol Sci ; 23(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35562991

RESUMO

Environmental factors can accelerate telomere length (TL) attrition. Shortened TL is linked to attention deficit/hyperactivity disorder (ADHD) symptoms in school-aged children. The onset of ADHD occurs as early as preschool-age, but the TL-ADHD association in younger children is unknown. We investigated associations between infant TL and ADHD symptoms in children and assessed environmental factors as potential confounders and/or mediators of this association. Relative TL was measured by quantitative polymerase chain reaction in cord and 12-month blood in the birth cohort study, the Barwon Infant Study. Early life environmental factors collected antenatally to two years were used to measure confounding. ADHD symptoms at age two years were evaluated by the Child Behavior Checklist Attention Problems (AP) and the Attention Deficit/Hyperactivity Problems (ADHP). Associations between early life environmental factors on TL or ADHD symptoms were assessed using multivariable regression models adjusted for relevant factors. Telomere length at 12 months (TL12), but not at birth, was inversely associated with AP (ß = -0.56; 95% CI (-1.13, 0.006); p = 0.05) and ADHP (ß = -0.66; 95% CI (-1.11, -0.21); p = 0.004). Infant secondhand smoke exposure at one month was independently associated with shorter TL12 and also higher ADHD symptoms. Further work is needed to elucidate the mechanisms that influence TL attrition and early neurodevelopment.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Deficit de Atenção com Hiperatividade/genética , Coorte de Nascimento , Criança , Pré-Escolar , Estudos de Coortes , Humanos , Lactente , Instituições Acadêmicas , Telômero/genética
11.
Elife ; 112022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35535496

RESUMO

Background: The risk of adult onset cardiovascular and metabolic (cardiometabolic) disease accrues from early life. Infection is ubiquitous in infancy and induces inflammation, a key cardiometabolic risk factor, but the relationship between infection, inflammation, and metabolic profiles in early childhood remains unexplored. We investigated relationships between infection and plasma metabolomic and lipidomic profiles at age 6 and 12 months, and mediation of these associations by inflammation. Methods: Matched infection, metabolomics, and lipidomics data were generated from 555 infants in a pre-birth longitudinal cohort. Infection data from birth to 12 months were parent-reported (total infections at age 1, 3, 6, 9, and 12 months), inflammation markers (high-sensitivity C-reactive protein [hsCRP]; glycoprotein acetyls [GlycA]) were quantified at 12 months. Metabolic profiles were 12-month plasma nuclear magnetic resonance metabolomics (228 metabolites) and liquid chromatography/mass spectrometry lipidomics (776 lipids). Associations were evaluated with multivariable linear regression models. In secondary analyses, corresponding inflammation and metabolic data from birth (serum) and 6-month (plasma) time points were used. Results: At 12 months, more frequent infant infections were associated with adverse metabolomic (elevated inflammation markers, triglycerides and phenylalanine, and lower high-density lipoprotein [HDL] cholesterol and apolipoprotein A1) and lipidomic profiles (elevated phosphatidylethanolamines and lower trihexosylceramides, dehydrocholesteryl esters, and plasmalogens). Similar, more marked, profiles were observed with higher GlycA, but not hsCRP. GlycA mediated a substantial proportion of the relationship between infection and metabolome/lipidome, with hsCRP generally mediating a lower proportion. Analogous relationships were observed between infection and 6-month inflammation, HDL cholesterol, and apolipoprotein A1. Conclusions: Infants with a greater infection burden in the first year of life had proinflammatory and proatherogenic plasma metabolomic/lipidomic profiles at 12 months of age that in adults are indicative of heightened risk of cardiovascular disease, obesity, and type 2 diabetes. These findings suggest potentially modifiable pathways linking early life infection and inflammation with subsequent cardiometabolic risk. Funding: The establishment work and infrastructure for the BIS was provided by the Murdoch Children's Research Institute (MCRI), Deakin University, and Barwon Health. Subsequent funding was secured from National Health and Medical Research Council of Australia (NHMRC), The Shepherd Foundation, The Jack Brockhoff Foundation, the Scobie & Claire McKinnon Trust, the Shane O'Brien Memorial Asthma Foundation, the Our Women's Our Children's Fund Raising Committee Barwon Health, the Rotary Club of Geelong, the Minderoo Foundation, the Ilhan Food Allergy Foundation, GMHBA, Vanguard Investments Australia Ltd, and the Percy Baxter Charitable Trust, Perpetual Trustees. In-kind support was provided by the Cotton On Foundation and CreativeForce. The study sponsors were not involved in the collection, analysis, and interpretation of data; writing of the report; or the decision to submit the report for publication. Research at MCRI is supported by the Victorian Government's Operational Infrastructure Support Program. This work was also supported by NHMRC Senior Research Fellowships to ALP (1008396); DB (1064629); and RS (1045161) , NHMRC Investigator Grants to ALP (1110200) and DB (1175744), NHMRC-A*STAR project grant (1149047). TM is supported by an MCRI ECR Fellowship. SB is supported by the Dutch Research Council (452173113).


Assuntos
Fatores de Risco Cardiometabólico , Doenças Cardiovasculares , Apolipoproteína A-I , Proteína C-Reativa , Doenças Cardiovasculares/epidemiologia , HDL-Colesterol , Estudos de Coortes , Diabetes Mellitus Tipo 2 , Feminino , Humanos , Lactente , Inflamação , Lipidômica
12.
Brain Behav Immun ; 104: 83-94, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35618227

RESUMO

BACKGROUND: Emotional and behavioral problems (EBP) are common in children. Environmental factors like socioeconomic disadvantage influence EBP pathogenesis and can trigger inflammation. However, the link between early inflammation-EBP in children is unclear. We investigated the associations between i) infant inflammatory biomarkers and subsequent EBP and ii) early life environmental factors and EBP and assessed whether infant inflammation mediated these associations. METHODS: Inflammatory biomarkers glycoprotein acetyls (GlycA) and high-sensitivity C-reactive protein (hsCRP) were quantified at birth and 12 months in a population-derived birth cohort, the Barwon Infant Study. Early life factors including demographic, prenatal, and perinatal factors were collected from antenatal to the two-year period. Internalizing and externalizing problems at age two were measured by the Child Behavior Checklist. Prospective associations were examined by multivariable regression analyses adjusted for potential confounders. Indirect effects of early life factors on EBP through inflammation were identified using mediation analyses. RESULTS: Elevated GlycA levels at birth (GlycAbirth) were associated with greater internalizing problems at age two (ß = 1.32 per SD increase in GlycA; P = 0.001). Inflammation at birth had a stronger magnitude of effect with later EBP than at 12 months. GlycAbirth partially mediated the associations between lower household income (6%), multiparity (12%) and greater number of older siblings (13%) and EBP. Patterns were less evident for hsCRP or externalizing problems. CONCLUSIONS: GlycAbirth was positively associated with EBP at age two and partially mediated the association between several indicators of socioeconomic disadvantage and EBP. Prenatal and perinatal inflammation may be relevant to early neurodevelopment and emotional health.

13.
Antioxidants (Basel) ; 11(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35453345

RESUMO

The developing brain is highly sensitive to environmental disturbances, and adverse exposures can act through oxidative stress. Given that oxidative stress susceptibility is determined partly by genetics, multiple studies have employed genetic scores to explore the role of oxidative stress in human disease. However, traditional approaches to genetic score construction face a range of challenges, including a lack of interpretability, bias towards the disease outcome, and often overfitting to the study they were derived on. Here, we develop an alternative strategy by first generating a genetic pathway function score for oxidative stress (gPFSox) based on the transcriptional activity levels of the oxidative stress response pathway in brain and other tissue types. Then, in the Barwon Infant Study (BIS), a population-based birth cohort (n = 1074), we show that a high gPFSox, indicating reduced ability to counter oxidative stress, is linked to higher autism spectrum disorder risk and higher parent-reported autistic traits at age 4 years, with AOR values (per 2 additional pro-oxidant alleles) of 2.10 (95% CI (1.12, 4.11); p = 0.024) and 1.42 (95% CI (1.02, 2.01); p = 0.041), respectively. Past work in BIS has reported higher prenatal phthalate exposure at 36 weeks of gestation associated with offspring autism spectrum disorder. In this study, we examine combined effects and show a consistent pattern of increased neurodevelopmental problems for individuals with both a high gPFSox and high prenatal phthalate exposure across a range of outcomes, including high gPFSox and high DEHP levels against autism spectrum disorder (attributable proportion due to interaction 0.89; 95% CI (0.62, 1.16); p < 0.0001). The results highlight the utility of this novel functional genetic score and add to the growing evidence implicating gestational phthalate exposure in adverse neurodevelopment.

14.
Autism ; 26(7): 1864-1881, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35012378

RESUMO

LAY ABSTRACT: Mounting evidence indicates the contribution of early life environmental factors in autism spectrum disorder. We aim to report the prospective associations between early life environmental factors and autism spectrum disorder symptoms in children at the age of 2 years in a population-derived birth cohort, the Barwon Infant Study. Autism spectrum disorder symptoms at the age of 2 years strongly predicted autism spectrum disorder diagnosis by the age of 4 years (area under curve = 0.93; 95% CI (0.82, 1.00)). After adjusting for child's sex and age at the time of behavioural assessment, markers of socioeconomic disadvantage, such as lower household income and lone parental status; maternal health factors, including younger maternal age, maternal pre-pregnancy body mass index, higher gestational weight gain and prenatal maternal stress; maternal lifestyle factors, such as prenatal alcohol and environmental air pollutant exposures, including particulate matter < 2.5 µm at birth, child secondhand tobacco smoke at 12 months, dampness/mould and home heating with oil, kerosene or diesel heaters at 2 years postnatal. Lower socioeconomic indexes for area, later birth order, higher maternal prenatal depression and maternal smoking frequency had a dose-response relationship with autism spectrum disorder symptoms. Future studies on environmental factors and autism spectrum disorder should consider the reasons for the socioeconomic disparity and the combined impact of multiple environmental factors through common mechanistic pathways.


Assuntos
Poluentes Atmosféricos , Transtorno do Espectro Autista , Poluição por Fumaça de Tabaco , Poluentes Atmosféricos/análise , Transtorno do Espectro Autista/epidemiologia , Transtorno do Espectro Autista/etiologia , Coorte de Nascimento , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Querosene , Material Particulado/análise , Gravidez , Fatores de Risco
15.
Brain Behav Immun ; 100: 211-218, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34896180

RESUMO

Poor cognitive outcomes in early childhood predict poor educational outcomes and diminished health over the life course. We sought to investigate (i) whether maternal metabolites predict child cognition, and (ii) if maternal metabolomic profile mediates the relationship between environmental exposures and child cognition. Metabolites were measured using nuclear magnetic resonance-based metabolomics in pregnant women from a population-derived birth cohort. Child cognition was measured at age 2 years. In 662 mother-child pairs, elevated inflammatory markers (ß = -2.62; 95% CI -4.10, -1.15; P = 0.0005) and lower omega-3 fatty acid-related metabolites (ß = 0.49; 95% CI 0.09, 0.88; P = 0.02) in the mother were associated with lower child cognition and partially mediated the association between lower child cognition and multiple risk factors common to socioeconomic disadvantage. Modifying maternal prenatal metabolic pathways related to inflammation and omega-3 fatty acids may offset the adverse associations between prenatal risk factors related to socioeconomic disadvantage and low child cognition.


Assuntos
Ácidos Graxos Ômega-3 , Pré-Escolar , Cognição , Feminino , Humanos , Mães , Gravidez , Fatores Socioeconômicos
16.
J Nutr ; 151(11): 3400-3412, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34386821

RESUMO

BACKGROUND: At a population level, the relation between dairy consumption and gut microbiome composition is poorly understood. OBJECTIVES: We sought to study the cross-sectional associations between individual dairy foods (i.e., milk, yogurt, and cheese), as well as total dairy intake, and the gut microbiome composition in a large, representative sample of men living in south-eastern Australia. METHODS: Data on 474 men (mean ± SD: 64.5 ± 13.5 y old) from the Geelong Osteoporosis Study were used to assess the cross-sectional association between dairy consumption and gut microbiome. Information on dairy intake was self-reported. Men were categorized as consumers and nonconsumers of milk, yogurt, cheese, and high- and low-fat milk. Milk, yogurt, and cheese intakes were summed to calculate the total dairy consumed per day and categorized into either low (<2.5 servings/d) or high (≥2.5 servings/d) total dairy groups. Fecal samples were analyzed using bacterial 16S ribosomal RNA (rRNA) gene sequencing. After assessment of α and ß diversity, differential abundance analysis was performed to identify bacterial taxa associated with each of milk, yogurt, and cheese consumption compared with nonconsumption, low compared with high total dairy, and low- compared with high-fat milk consumption. All analyses were adjusted for potential confounders. RESULTS: α Diversity was not associated with consumption of any of the dairy groups. Differences in ß diversity were observed between milk and yogurt consumption compared with nonconsumption. Taxa belonging to the genera Ruminococcaceae UCG-010 and Bifidobacterium showed negative and weak positive associations with milk consumption, respectively. A taxon from the genus Streptococcus was positively associated with yogurt consumption, whereas a taxon from the genus Eisenbergiella was negatively associated with cheese consumption. No specific taxa were associated with low- compared with high-fat milk nor low compared with high total dairy consumption. CONCLUSIONS: In men, community-level microbiome differences were observed between consumers and nonconsumers of milk and yogurt. Bacterial taxon-level associations were detected with milk, yogurt, and cheese consumption. Total dairy consumption was not associated with any microbiome measures, suggesting that individual dairy foods may have differential roles in shaping the gut microbiome in men.


Assuntos
Microbioma Gastrointestinal , Animais , Estudos Transversais , Laticínios , Dieta , Humanos , Masculino , Leite , Iogurte
17.
J Allergy Clin Immunol ; 148(3): 669-678, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34310928

RESUMO

Environmental exposures during pregnancy that alter both the maternal gut microbiome and the infant's risk of allergic disease and asthma include a traditional farm environment and consumption of unpasteurized cow's milk, antibiotic use, dietary fiber, and psychosocial stress. Multiple mechanisms acting in concert may underpin these associations and prime the infant to acquire immune competence and homeostasis following exposure to the extrauterine environment. Cellular and metabolic products of the maternal gut microbiome can promote the expression of microbial pattern recognition receptors, as well as thymic and bone marrow hematopoiesis relevant to regulatory immunity. At birth, transmission of maternally derived bacteria likely leverages this in utero programming to accelerate postnatal transition from a TH2- to TH1- and TH17-dominant immune phenotype and maturation of regulatory immune mechanisms, which in turn reduce the child's risk of allergic disease and asthma. Although our understanding of these phenomena is rapidly evolving, the field is relatively nascent, and we are yet to translate existing knowledge into interventions that substantially reduce disease risk in humans. Here, we review evidence that the maternal gut microbiome impacts the offspring's risk of allergic disease and asthma, discuss challenges and future directions for the field, and propose the hypothesis that maternal carriage of Prevotella copri during pregnancy decreases the offspring's risk of allergic disease via production of succinate, which in turn promotes bone marrow myelopoiesis of dendritic cell precursors in the fetus.


Assuntos
Microbioma Gastrointestinal , Hipersensibilidade/epidemiologia , Animais , Suplementos Nutricionais , Feminino , Humanos , Recém-Nascido , Gravidez , Probióticos , Risco
18.
EBioMedicine ; 68: 103400, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34098340

RESUMO

BACKGROUND: Murine studies demonstrate that maternal prenatal gut microbiota influences brain development and behaviour of offspring. No human study has related maternal gut microbiota to behavioural outcomes during early life. This study aimed to evaluate relationships between the prenatal faecal microbiota, prenatal diet and childhood behaviour. METHODS: A sub-cohort of 213 mothers and 215 children were selected from a longitudinal pre-birth cohort. Maternal prenatal exposure measures collected during the third trimester included the faecal microbiota (generated using 16S rRNA amplicon sequencing), and dietary intake. The behavioural outcome used the Childhood Behaviour Checklist at age two. Models were adjusted for prenatal diet, smoking, perceived stress, maternal age and sample batch. FINDINGS: We found evidence that the alpha diversity of the maternal faecal microbiota during the third trimester of pregnancy predicts child internalising behaviour at two years of age (-2·74, (-4·71, -0·78), p = 0·01 (Wald test), R2=0·07). Taxa from butyrate-producing families, Lachnospiraceae and Ruminococcaceae, were more abundant in mothers of children with normative behaviour. A healthy prenatal diet indirectly related to decreased child internalising behaviours via higher alpha diversity of maternal faecal microbiota. INTERPRETATION: These findings support animal studies showing that the composition of maternal prenatal gut microbiota is related to offspring brain development and behaviour. Our findings highlight the need to evaluate potential impacts of the prenatal gut microbiota on early life brain development. FUNDING: This study was funded by the National Health and Medical Research Council of Australia (1082307, 1147980), Murdoch Children's Research Institute, Barwon Health and Deakin University.


Assuntos
Bactérias/classificação , Comportamento Infantil/psicologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Adulto , Austrália , Bactérias/genética , Bactérias/isolamento & purificação , Pré-Escolar , DNA Bacteriano/genética , DNA Ribossômico/genética , Ingestão de Alimentos , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Humanos , Estudos Longitudinais , Idade Materna , Exposição Materna , Mães , Filogenia , Gravidez , Terceiro Trimestre da Gravidez
19.
J Allergy Clin Immunol ; 147(5): 1823-1829.e11, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33810856

RESUMO

BACKGROUND: Environmental microbial exposure plays a role in immune system development and susceptibility to food allergy. OBJECTIVE: We sought to investigate whether infant pacifier use during the first postnatal year, with further consideration of sanitization, alters the risk of food allergy by age 1 year. METHODS: The birth cohort recruited pregnant mothers at under 28 weeks' gestation in southeast Australia, with 894 families followed up when infants turned 1 year. Infants were excluded if born under 32 weeks, with a serious illness, major congenital malformation, or genetic disease. Questionnaire data, collected at recruitment and infant ages 1, 6, and 12 months, included pacifier use and pacifier sanitization (defined as the joint exposure of a pacifier and cleaning methods). Challenge-proven food allergy was assessed at 12 months. RESULTS: Any pacifier use at 6 months was associated with food allergy (adjusted odds ratio, 1.94; 95% CI, 1.04-3.61), but not pacifier use at other ages. This overall association was driven by the joint exposure of pacifier-antiseptic use (adjusted odds ratio, 4.83; 95% CI, 1.10-21.18) compared with no pacifier use. Using pacifiers without antiseptic at 6 months was not associated with food allergy. Among pacifier users, antiseptic cleaning was still associated with food allergy (adjusted odds ratio, 3.56; 95% CI, 1.18-10.77) compared with no antiseptic use. Furthermore, persistent and repeated antiseptic use over the first 6 months was associated with higher food allergy risk (P = .029). CONCLUSIONS: This is the first report of a pacifier-antiseptic combination being associated with a higher risk of subsequent food allergy. Future work should investigate underlying biological pathways.


Assuntos
Anti-Infecciosos Locais , Desinfecção/métodos , Hipersensibilidade Alimentar/epidemiologia , Chupetas/estatística & dados numéricos , Estudos de Coortes , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Risco
20.
J Immunol ; 206(4): 874-882, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33431661

RESUMO

Vitamin D has shown immune-modulatory effects but mostly in in vitro and animal studies. Regulatory T cells (Treg) are important for a balanced immune system. The relationship between vitamin D on the number of circulating neonatal Treg is unclear. We sought to investigate the association between maternal and neonatal vitamin D metabolites and cord blood (CB) Treg subsets. In a cohort of Australian infants (n = 1074), recruited using an unselected antenatal sampling frame, 158 mother-infant pairs had data on the following: 1) 25-hydroxyvitamin D3 (25(OH)D3) measures in both maternal peripheral blood (28- to 32-wk gestation) and infant CB; 2) proportions (percentage of CD4+ T cells) of CB Treg subsets (CD4+CD45RA+ FOXP3low naive Treg, and CD4+CD45RA- FOXP3high activated Treg [aTreg]); and 3) possible confounders, including maternal personal UV radiation. Multiple regression analyses were used. The median 25(OH)D3 was 85.4 and 50.7 nmol/l for maternal and CB samples, respectively. Higher maternal 25(OH)D3 levels were associated with increased CB naive Treg (relative adjusted mean difference [AMD] per 25 nmol/l increase: 5%; 95% confidence interval [CI]: 1-9%), and aTreg (AMD per 25 nmol/l increase: 17%; 95% CI: 6-28%). Furthermore, a positive association between CB 25(OH)D3 levels and CB aTreg (AMD per 25 nmol/l increase: 29%; 95% CI: 13-48%) was also evident. These results persisted after adjustment for other factors such as maternal personal UV radiation and season of birth. 25(OH)D3, may play a role in the adaptive neonatal immune system via induction of FOXP3+ Tregs. Further studies of immune priming actions of antenatal 25(OH)D3 are warranted.


Assuntos
Calcifediol/imunologia , Sangue Fetal/imunologia , Ativação Linfocitária , Linfócitos T Reguladores/imunologia , Feminino , Humanos , Recém-Nascido , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA