Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 17(10): e3000492, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31626642

RESUMO

Naturally occurring cell death is a fundamental developmental mechanism for regulating cell numbers and sculpting developing organs. This is particularly true in the nervous system, where large numbers of neurons and oligodendrocytes are eliminated via apoptosis during normal development. Given the profound impact of death upon these two major cell populations, it is surprising that developmental death of another major cell type-the astrocyte-has rarely been studied. It is presently unclear whether astrocytes are subject to significant developmental death, and if so, how it occurs. Here, we address these questions using mouse retinal astrocytes as our model system. We show that the total number of retinal astrocytes declines by over 3-fold during a death period spanning postnatal days 5-14. Surprisingly, these astrocytes do not die by apoptosis, the canonical mechanism underlying the vast majority of developmental cell death. Instead, we find that microglia engulf astrocytes during the death period to promote their developmental removal. Genetic ablation of microglia inhibits astrocyte death, leading to a larger astrocyte population size at the end of the death period. However, astrocyte death is not completely blocked in the absence of microglia, apparently due to the ability of astrocytes to engulf each other. Nevertheless, mice lacking microglia showed significant anatomical changes to the retinal astrocyte network, with functional consequences for the astrocyte-associated vasculature leading to retinal hemorrhage. These results establish a novel modality for naturally occurring cell death and demonstrate its importance for the formation and integrity of the retinal gliovascular network.


Assuntos
Astrócitos/citologia , Morte Celular/genética , Microglia/citologia , Retina/citologia , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiopatologia , Comunicação Celular , Contagem de Células , Toxina Diftérica/toxicidade , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fator de Transcrição PAX2/genética , Fator de Transcrição PAX2/metabolismo , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Retina/efeitos dos fármacos , Retina/metabolismo , Hemorragia Retiniana/genética , Hemorragia Retiniana/metabolismo , Hemorragia Retiniana/fisiopatologia , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
2.
Immunity ; 50(3): 723-737.e7, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30850344

RESUMO

Microglia from different nervous system regions are molecularly and anatomically distinct, but whether they also have different functions is unknown. We combined lineage tracing, single-cell transcriptomics, and electrophysiology of the mouse retina and showed that adult retinal microglia shared a common developmental lineage and were long-lived but resided in two distinct niches. Microglia in these niches differed in their interleukin-34 dependency and functional contribution to visual-information processing. During certain retinal-degeneration models, microglia from both pools relocated to the subretinal space, an inducible disease-associated niche that was poorly accessible to monocyte-derived cells. This microglial transition involved transcriptional reprogramming of microglia, characterized by reduced expression of homeostatic checkpoint genes and upregulation of injury-responsive genes. This transition was associated with protection of the retinal pigmented epithelium from damage caused by disease. Together, our data demonstrate that microglial function varies by retinal niche, thereby shedding light on the significance of microglia heterogeneity.


Assuntos
Homeostase/fisiologia , Microglia/patologia , Degeneração Retiniana/patologia , Animais , Modelos Animais de Doenças , Epitélio Corneano/patologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Retina/patologia , Regulação para Cima/fisiologia
3.
Nat Rev Immunol ; 17(5): 322-332, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28345586

RESUMO

Major advances in mononuclear phagocyte biology have been made but key questions pertinent to their roles in health and disease remain, including in the visual system. One problem concerns how dendritic cells can trigger immune responses from certain tightly regulated immune- privileged sites of the eye. Another, albeit separate, problem involves whether there are functional specializations for microglia versus monocytes in retinal neurodegeneration. In this Review, we examine novel insights in eye immune privilege and, separately, we discuss recent inroads concerning retinal degeneration. Both themes have been extensively studied in the visual system and show parallels with recent findings concerning mononuclear phagocytes in the central nervous system and in the periphery.


Assuntos
Olho/imunologia , Sistema Fagocitário Mononuclear/imunologia , Animais , Olho/citologia , Humanos , Retina/citologia , Retina/imunologia , Percepção Visual
4.
PLoS One ; 11(3): e0150606, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26938654

RESUMO

Flow cytometry is used extensively to examine immune cells in non-lymphoid tissues. However, a method of flow cytometric analysis that is both comprehensive and widely applicable has not been described. We developed a protocol for the flow cytometric analysis of non-lymphoid tissues, including methods of tissue preparation, a 10-fluorochrome panel for cell staining, and a standardized gating strategy, that allows the simultaneous identification and quantification of all major immune cell types in a variety of normal and inflamed non-lymphoid tissues. We demonstrate that our basic protocol minimizes cell loss, reliably distinguishes macrophages from dendritic cells (DC), and identifies all major granulocytic and mononuclear phagocytic cell types. This protocol is able to accurately quantify 11 distinct immune cell types, including T cells, B cells, NK cells, neutrophils, eosinophils, inflammatory monocytes, resident monocytes, alveolar macrophages, resident/interstitial macrophages, CD11b- DC, and CD11b+ DC, in normal lung, heart, liver, kidney, intestine, skin, eyes, and mammary gland. We also characterized the expression patterns of several commonly used myeloid and macrophage markers. This basic protocol can be expanded to identify additional cell types such as mast cells, basophils, and plasmacytoid DC, or perform detailed phenotyping of specific cell types. In examining models of primary and metastatic mammary tumors, this protocol allowed the identification of several distinct tumor associated macrophage phenotypes, the appearance of which was highly specific to individual tumor cell lines. This protocol provides a valuable tool to examine immune cell repertoires and follow immune responses in a wide variety of tissues and experimental conditions.


Assuntos
Separação Celular/métodos , Citometria de Fluxo/métodos , Inflamação/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/patologia , Basófilos/imunologia , Basófilos/patologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Eosinófilos/imunologia , Eosinófilos/patologia , Inflamação/patologia , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Macrófagos/imunologia , Macrófagos/patologia , Mastócitos/imunologia , Mastócitos/patologia , Camundongos , Neutrófilos/imunologia , Neutrófilos/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
5.
J Immunol ; 191(9): 4665-75, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24078688

RESUMO

Macrophages and dendritic cells (DC) are distributed throughout the body and play important roles in pathogen detection and tissue homeostasis. In tissues, resident macrophages exhibit distinct phenotypes and activities, yet the transcriptional pathways that specify tissue-specific macrophages are largely unknown. We investigated the functions and origins of two peritoneal macrophage populations in mice: small and large peritoneal macrophages (SPM and LPM, respectively). SPM and LPM differ in their ability to phagocytose apoptotic cells, as well as in the production of cytokines in response to LPS. In steady-state conditions, SPM are sustained by circulating precursors, whereas LPM are maintained independently of hematopoiesis; however, both populations are replenished by bone marrow precursors following radiation injury. Transcription factor analysis revealed that SPM and LPM express abundant CCAAT/enhancer binding protein (C/EBP)-ß. Cebpb(-/-) mice exhibit elevated numbers of SPM-like cells but lack functional LPM. Alveolar macrophages are also missing in Cebpb(-/-) mice, although macrophage populations in the spleen, kidney, skin, mesenteric lymph nodes, and liver are normal. Adoptive transfer of SPM into Cebpb(-/-) mice results in SPM differentiation into LPM, yet donor SPM do not generate LPM after transfer into C/EBPß-sufficient mice, suggesting that endogenous LPM inhibit differentiation by SPM. We conclude that C/EBPß plays an intrinsic, tissue-restricted role in the generation of resident macrophages.


Assuntos
Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Peritoneais/metabolismo , Transferência Adotiva , Animais , Apoptose , Proteína beta Intensificadora de Ligação a CCAAT/genética , Diferenciação Celular , Células Dendríticas/imunologia , Rim/citologia , Fígado/citologia , Linfonodos/citologia , Macrófagos Alveolares/citologia , Macrófagos Alveolares/imunologia , Macrófagos Peritoneais/citologia , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fagocitose/imunologia , Pele/citologia , Baço/citologia
6.
Am J Respir Cell Mol Biol ; 49(5): 788-97, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23742075

RESUMO

Bronchiolitis obliterans (BO) is a major cause of chronic airway dysfunction after toxic chemical inhalation. The pathophysiology of BO is not well understood, but epithelial cell injury has been closely associated with the development of fibrotic lesions in human studies and in animal models of both toxin-induced and transplant-induced BO. However, whereas almost all cases and models of BO include epithelial injury, not all instances of epithelial injury result in BO, suggesting that epithelial damage per se is not the critical event leading to the development of BO. Here, we describe a model of chlorine-induced BO in which mice develop tracheal and large airway obliterative lesions within 10 days of exposure to high (350 parts per million [ppm]), but not low (200 ppm), concentrations of chlorine gas. Importantly, these lesions arise only under conditions and in areas in which basal cells, the resident progenitor cells for large airway epithelium, are eliminated by chlorine exposure. In areas of basal cell loss, epithelial regeneration does not occur, resulting in persistent regions of epithelial denudation. Obliterative airway lesions arise specifically from regions of epithelial denudation in a process that includes inflammatory cell infiltration by Day 2 after exposure, fibroblast infiltration and collagen deposition by Day 5, and the ingrowth of blood vessels by Day 7, ultimately leading to lethal airway obstruction by Days 9-12. We conclude that the loss of epithelial progenitor cells constitutes a critical factor leading to the development of obliterative airway lesions after chemical inhalation.


Assuntos
Brônquios/patologia , Bronquiolite Obliterante/patologia , Cloro , Células Epiteliais/patologia , Mucosa Respiratória/patologia , Células-Tronco/patologia , Traqueia/patologia , Animais , Brônquios/metabolismo , Bronquiolite Obliterante/induzido quimicamente , Bronquiolite Obliterante/metabolismo , Morte Celular , Colágeno/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Células Epiteliais/metabolismo , Feminino , Fibrose , Gases , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Exposição por Inalação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neovascularização Patológica , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/patologia , Reepitelização , Mucosa Respiratória/metabolismo , Células-Tronco/metabolismo , Fatores de Tempo , Traqueia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA