RESUMO
Purpose: Diagnosis of ocular graft-versus-host disease (oGVHD) is hampered by a lack of clinically-validated biomarkers. This study aims to predict disease severity on the basis of tear protein expression in mild oGVHD. Methods: Forty-nine patients with and without chronic oGVHD after AHCT were recruited to a cross-sectional observational study. Patients were stratified using NIH guidelines for oGVHD severity: NIH 0 (none; n = 14), NIH 1 (mild; n = 9), NIH 2 (moderate; n = 16), and NIH 3 (severe; n = 10). The proteomic profile of tears was analyzed using liquid chromatography-tandem mass spectrometry. Random forest and penalized logistic regression were used to generate classification and prediction models to stratify patients according to disease severity. Results: Mass spectrometry detected 785 proteins across all samples. A random forest model used to classify patients by disease grade achieved F1-measure values for correct classification of 0.95 (NIH 0), 0.8 (NIH 1), 0.74 (NIH 2), and 0.83 (NIH 3). A penalized logistic regression model was generated by comparing patients without oGVHD and those with mild oGVHD and applied to identify potential biomarkers present early in disease. A panel of 13 discriminant markers achieved significant diagnostic accuracy in identifying patients with moderate-to-severe disease. Conclusions: Our work demonstrates the utility of tear protein biomarkers in classifying oGVHD severity and adds further evidence indicating ocular surface inflammation as a main driver of oGVHD clinical phenotype. Translational Relevance: Expression levels of a 13-marker tear protein panel in AHCT patients with mild oGVHD may predict development of more severe oGVHD clinical phenotypes.
Assuntos
Doença Enxerto-Hospedeiro , Biomarcadores , Estudos Transversais , Doença Enxerto-Hospedeiro/diagnóstico , Humanos , Proteômica , LágrimasRESUMO
The mission of the Tear Film & Ocular Surface Society (TFOS) is to advance the research, literacy, and educational aspects of the scientific field of the tear film and ocular surface. Fundamental to fulfilling this mission is the TFOS Global Ambassador program. TFOS Ambassadors are dynamic and proactive experts, who help promote TFOS initiatives, such as presenting the conclusions and recommendations of the recent TFOS DEWS II™, throughout the world. They also identify unmet needs, and propose future clinical and scientific solutions, for management of ocular surface diseases in their countries. This meeting report addresses such needs and solutions for 25 European countries, as detailed in the TFOS European Ambassador meeting in Rome, Italy, in September 2019.
Assuntos
Síndromes do Olho Seco , Congressos como Assunto , Europa (Continente) , Olho , Humanos , Itália , LágrimasRESUMO
PURPOSE: Retinal ischemia remains a common sight threatening end-point in blinding diseases such as diabetic retinopathy and retinopathy of prematurity. Endothelial colony forming cells (ECFCs) represent a subpopulation of endothelial progenitors with therapeutic utility for promoting reparative angiogenesis in the ischaemic retina. The current study has investigated the potential of enhancing this cell therapy approach by the dampening of the pro-inflammatory milieu typical of ischemic retina. Based on recent findings that ARA290 (cibinetide), a peptide based on the Helix-B domain of erythropoietin (EPO), is anti-inflammatory and tissue-protective, the effect of this peptide on ECFC-mediated vascular regeneration was studied in the ischemic retina. METHODS: The effects of ARA290 on pro-survival signaling and function were assessed in ECFC cultures in vitro. Efficacy of ECFC transplantation therapy to promote retinal vascular repair in the presence and absence of ARA290 was studied in the oxygen induced retinopathy (OIR) model of retinal ischemia. The inflammatory cytokine profile and microglial activation were studied as readouts of inflammation. RESULTS: ARA290 activated pro-survival signaling and enhanced cell viability in response to H2O2-mediated oxidative stress in ECFCs in vitro. Preconditioning of ECFCs with EPO or ARA290 prior to delivery to the ischemic retina did not enhance vasoreparative function. ARA290 delivered systemically to OIR mice reduced pro-inflammatory expression of IL-1ß and TNF-α in the mouse retina. Following intravitreal transplantation, ECFCs incorporated into the damaged retinal vasculature and significantly reduced avascular area. The vasoreparative function of ECFCs was enhanced in the presence of ARA290 but not EPO. DISCUSSION: Regulation of the pro-inflammatory milieu of the ischemic retina can be enhanced by ARA290 and may be a useful adjunct to ECFC-based cell therapy for ischemic retinopathies.
Assuntos
Endotélio Vascular/patologia , Isquemia/tratamento farmacológico , Oligopeptídeos/farmacologia , Doenças Retinianas/tratamento farmacológico , Vasos Retinianos/fisiopatologia , Vasodilatação/fisiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Eritropoetina/metabolismo , Humanos , Recém-Nascido , Isquemia/metabolismo , Isquemia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Transdução de SinaisRESUMO
Purpose: To date, no biomarkers for ocular graft versus host disease (GvHD), a frequent complication following allogeneic hematopoietic cell transplantation (HCT), exist. In this prospective study, we evaluated the potential of human tear proteins as biomarkers for ocular GvHD. Methods: Tears from 10 patients with moderate-to-severe ocular GvHD were compared to 10 patients without ocular GvHD. After a full ocular surface clinical examination, tears were collected onto Schirmer strips and protein composition was analyzed by liquid chromatography tandem mass spectrometry. Statistical evaluation was performed using the Mann-Whitney U test to compare means and the false discovery rate method to adjust for multiple comparisons. Functional annotation of differentially expressed proteins was done with the PANTHER classification system. Results: We identified 282 proteins in tryptic digests of Schirmer strips; 79 proteins were significantly differentially expressed between the two groups, from which 54 were up- and 25 downregulated. The most upregulated proteins were classified as nucleic acid binding and cytoskeletal proteins, while the most extensively downregulated proteins belong to an array of classes including transfer and receptor proteins, enzyme modulators, and hydrolases. In addition to proteins already confirmed as differentially expressed in dry eye disease, we report changes in 36 novel proteins. Conclusions: This study reports the proteomic profile of tears in ocular GvHD for the first time and identifies a number of unique differentially expressed proteins. Further studies with a higher number of participants are necessary to confirm these results and to evaluate the reliability of these expression patterns in longitudinal studies.
Assuntos
Biomarcadores/metabolismo , Oftalmopatias/metabolismo , Proteínas do Olho/metabolismo , Doença Enxerto-Hospedeiro/metabolismo , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Lágrimas/metabolismo , Adulto , Idoso , Cromatografia Líquida , Oftalmopatias/etiologia , Feminino , Doença Enxerto-Hospedeiro/etiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Proteômica , Espectrometria de Massas em Tandem , Transplante Homólogo , Adulto JovemRESUMO
This review summarizes the pathological features of diabetic retinopathy. The lesions occurring in the diabetic retina have been described over many decades using descriptive and experimental approaches based on clinical studies on patients, human post-mortem material, animal models and various in vitro systems. We have also accumulated a wealth of knowledge about basic molecular mechanisms and key pathogenic processes that drive these abnormalities in diabetic retina. Despite these advances, there are still limited therapeutic options for diabetic retinopathy with those currently available only addressing late-stage disease. With a particular focus on the earlier stages of diabetes, there is growing appreciation the complex neuronal, glial and microvascular abnormalities which progressively disrupt retinal function. This is especially true from the perspective of the neurovascular unit during health and disease. Based on a strong appreciation of cellular and molecular pathology that underpins diabetic retinopathy, further advances are anticipated as we drive towards development of efficacious therapeutic options that can address all stages of disease.