Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Int J Radiat Oncol Biol Phys ; 104(3): 685-693, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30872145

RESUMO

PURPOSE: Adaptive radiation therapy strategies could account for interfractional uterine motion observed in patients with cervix cancer, but the current cone beam computed tomography (CBCT)-based treatment workflow is limited by poor soft-tissue contrast. The goal of the present study was to determine if ultrasound (US) could be used to improve visualization of the uterus, either as a single modality or in combination with CBCT. METHODS AND MATERIALS: Interobserver uterine contour agreement and confidence were compared on 40 corresponding CBCT, US, and CBCT-US-fused images from 11 patients with cervix cancer. Contour agreement was measured using the Dice similarity coefficient (DSC) and mean contour-to-contour distance (MCCD). Observers rated their contour confidence on a scale from 1 to 10. Pairwise Wilcoxon signed-rank tests were used to measure differences in contour agreement and confidence. RESULTS: CBCT-US fused images had significantly better contour agreement and confidence than either individual modality (P < .05), with median (interquartile range [IQR]) values of 0.84 (0.11), 1.26 (0.23) mm, and 7 (2) for the DSC, MCCD, and observer confidence ratings, respectively. Contour agreement was similar between US and CBCT, with median (IQR) DSCs of 0.81 (0.17) and 0.82 (0.14) and MCCDs of 1.75 (1.15) mm and 1.62 (0.74) mm. Observers were significantly more confident in their US-based contours than in their CBCT-based contours (P < .05), with median (IQR) confidence ratings of 7 (2.75) versus 5 (4). CONCLUSIONS: CBCT and US are complementary and improve uterine segmentation precision when combined. Observers could localize the uterus with a similar precision on independent US and CBCT images.


Assuntos
Colo do Útero/diagnóstico por imagem , Tomografia Computadorizada de Feixe Cônico , Imagem Multimodal/métodos , Radioterapia Guiada por Imagem/métodos , Ultrassonografia , Neoplasias do Colo do Útero/diagnóstico por imagem , Feminino , Humanos , Pessoa de Meia-Idade , Variações Dependentes do Observador , Planejamento da Radioterapia Assistida por Computador/métodos , Padrões de Referência , Autoimagem , Estatísticas não Paramétricas , Bexiga Urinária/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia
2.
Photoacoustics ; 13: 53-65, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30581729

RESUMO

Photoacoustic imaging (PAI) provides information on haemoglobin levels and blood oxygenation (sO2). To facilitate assessment of the variability in sO2 and haemoglobin in tumours, for example in response to therapies, the baseline variability of these parameters was evaluated in subcutaneous head and neck tumours in mice, using a PAI system (MSOTinVision-256TF). Tumours of anaesthetized animals (midazolam-fentanyl-medetomidine) were imaged for 75 min, in varying positions, and repeatedly over 6 days. An increasing linear trend for average tumoural haemoglobin and blood sO2 was observed, when imaging over 75 min. There were no significant differences in these temporal trends, when repositioning tumours. A negative correlation was found between the percent decrease in blood sO2 over 6 days and tumour growth rate. This paper shows the potential of PAI to provide baseline data for assessing the significance of intra- and inter-tumoural variations that may eventually have value for predicting and/or monitoring cancer treatment response.

3.
Int J Radiat Oncol Biol Phys ; 102(4): 912-921, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29859785

RESUMO

PURPOSE: Our purpose was to perform an in vivo validation of ultrasound imaging for intrafraction motion estimation using the Elekta Clarity Autoscan system during prostate radiation therapy. The study was conducted as part of the Clarity-Pro trial (NCT02388308). METHODS AND MATERIALS: Initial locations of intraprostatic fiducial markers were identified from cone beam computed tomography scans. Marker positions were translated according to Clarity intrafraction 3-dimensional prostate motion estimates. The updated locations were projected onto the 2-dimensional electronic portal imager plane. These Clarity-based estimates were compared with the actual portal-imaged 2-dimensional marker positions. Images from 16 patients encompassing 80 fractions were analyzed. To investigate the influence of intraprostatic markers and image quality on ultrasound motion estimation, 3 observers rated image quality, and the marker visibility on ultrasound images was assessed. RESULTS: The median difference between Clarity-defined intrafraction marker locations and portal-imaged marker locations was 0.6 mm (with 95% limit of agreement at 2.5 mm). Markers were identified on ultrasound in only 3 of a possible 240 instances. No linear relationship between image quality and Clarity motion estimation confidence was identified. The difference between Clarity-based motion estimates and electronic portal-imaged marker location was also independent of image quality. Clarity estimation confidence was degraded in a single fraction owing to poor probe placement. CONCLUSIONS: The accuracy of Clarity intrafraction prostate motion estimation is comparable with that of other motion-monitoring systems in radiation therapy. The effect of fiducial markers in the study was deemed negligible as they were rarely visible on ultrasound images compared with intrinsic anatomic features. Clarity motion estimation confidence was robust to variations in image quality and the number of ultrasound-imaged anatomic features; however, it was degraded as a result of poor probe placement.


Assuntos
Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radioterapia de Intensidade Modulada/métodos , Ultrassonografia/métodos , Humanos , Masculino , Movimento (Física) , Neoplasias da Próstata/diagnóstico por imagem
4.
Ultrason Imaging ; 40(3): 158-170, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29353529

RESUMO

The purpose of this study was to establish interobserver reproducibility of Young's modulus (YM) derived from ultrasound shear wave elastography (US-SWE) in the normal prostate and correlate it with multiparametric magnetic resonance imaging (mpMRI) tissue characteristics. Twenty men being screened for prostate cancer underwent same-day US-SWE (10 done by two blinded, newly-trained observers) and mpMRI followed by 12-core biopsy. Bland-Altman plots established limits of agreement for YM. Quantitative data from the peripheral zone (PZ) and the transitional zone (TZ) for YM, apparent diffusion coefficient (ADC, mm2/s from diffusion-weighted MRI), and Ktrans (volume transfer coefficient, min-1), Ve (extravascular-extracellular space, %), Kep (rate constant, /min), and initial area under the gadolinium concentration curve (IAUGC60, mmol/L/s) from dynamic contrast-enhanced MRI were obtained for slice-matched prostate sextants. Interobserver intraclass correlation coefficients were fair to good for individual regions (PZ = 0.57, TZ = 0.65) and for whole gland 0.67, (increasing to 0.81 when corrected for systematic observer bias). In the PZ, there were weak negative correlations between YM and ADC ( p = 0.008), and Ve ( p = 0.01) and a weak positive correlation with Kep ( p = 0.003). No significant intermodality correlations were seen in the TZ. Transrectal prostate US-SWE done without controlling manually applied probe pressure has fair/good interobserver reproducibility in inexperienced observers with potential to improve this to excellent by standardization of probe contact pressure. Within the PZ, increase in tissue stiffness is associated with reduced extracellular water (decreased ADC) and space (reduced Ve).


Assuntos
Técnicas de Imagem por Elasticidade/métodos , Imageamento por Ressonância Magnética/métodos , Próstata/anatomia & histologia , Adulto , Idoso , Meios de Contraste , Módulo de Elasticidade , Gadolínio , Humanos , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Próstata/diagnóstico por imagem , Valores de Referência , Reprodutibilidade dos Testes
5.
Med Phys ; 44(10): 5020-5033, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28688115

RESUMO

PURPOSE: The aim of this study was to estimate changes in surface dose due to the presence of the Clarity Autoscan™ ultrasound (US) probe during prostate radiotherapy using Monte Carlo (MC) methods. METHODS: MC models of the Autoscan US probe were developed using the BEAMnrc/DOSXYZnrc code based on kV and MV CT images. CT datasets were converted to voxelized mass density phantoms using a CT number-to-mass density calibration. The dosimetric effect of the probe, in the contact region (an 8 mm × 12 mm single layer of voxels), was investigated using a phantom set-up mimicking two scenarios (a) a transperineal imaging configuration (radiation beam perpendicular to the central US axial direction), and (b) a transabdominal imaging configuration (radiation beam parallel to the central US axial direction). For scenario (a), the dosimetric effect was evaluated as a function of the probe to inferior radiation field edge distance. Clinically applicable distances from 5 mm separation to 2 mm overlap were determined from the radiotherapy plans of 27 patients receiving Clarity imaging. Overlaps of 3 to 14 (1 to 3 SD) mm were also considered to include the effect of interfraction motion correction. The influence of voxel size on surface dose estimation was investigated. Approved clinical plans from two prostate patients were used to simulate worst-case dosimetric impact of the probe when large couch translations were applied to correct for interfraction prostate motion. RESULTS: The dosimetric impact of both the MV and kV probe models agreed within ±2% for both beam configurations. For scenario (a) and 1 mm voxel model, the probe gave mean dose increases of 1.2% to 4.6% (of the dose at isocenter) for 5 mm separation to 0 mm overlap in the probe-phantom contact region, respectively. This increased to 27.5% for the largest interfraction motion correction considered (14 mm overlap). For separations of ≥ 2 mm dose differences were < 2%. Simulated dose perturbations were found to be superficial; for the 14 mm overlap the dose increase reduced to < 3% at 5.0 mm within the phantom. For scenario (b), dose increases due to the probe were < 5% in all cases. The dose increase was underestimated by up to ~13% when the voxel size was increased from 1 mm to 3 mm. MC simulated dose to the PTV and OARs for the two clinical plans considered showed good agreement with commercial treatment planning system results (within 2%). Mean dose increases due to the presence of the probe, after the maximum interfraction motion correction, were ~16.3% and ~8.0%, in the contact region, for plan 1 and plan 2, respectively. CONCLUSIONS: The presence of the probe results in superficial dose perturbations for patients with an overlap between the probe and the radiation field present in either the original treatment plan or due to translation of the radiation field to simulate correction of interfraction internal prostate motion.


Assuntos
Fracionamento da Dose de Radiação , Método de Monte Carlo , Radioterapia de Intensidade Modulada/métodos , Transdutores , Ultrassonografia/instrumentação , Humanos , Masculino , Movimento , Imagens de Fantasmas , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X
6.
Med Phys ; 44(7): 3630-3638, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28493295

RESUMO

PURPOSE: 3D ultrasound (US) images of the uterus may be used to adapt radiotherapy (RT) for cervical cancer patients based on changes in daily anatomy. This requires accurate on-line segmentation of the uterus. The aim of this work was to assess the accuracy of Elekta's "Assisted Gyne Segmentation" (AGS) algorithm in semi-automatically segmenting the uterus on 3D transabdominal ultrasound images by comparison with manual contours. MATERIALS & METHODS: Nine patients receiving RT for cervical cancer were imaged with the 3D Clarity® transabdominal probe at RT planning, and 1 to 7 times during treatment. Image quality was rated from unusable (0)-excellent (3). Four experts segmented the uterus (defined as the uterine body and cervix) manually and using AGS on images with a ranking > 0. Pairwise analysis between manual contours was evaluated to determine interobserver variability. The accuracy of the AGS method was assessed by measuring its agreement with manual contours via pairwise analysis. RESULTS: 35/44 images acquired (79.5%) received a ranking > 0. For the manual contour variation, the median [interquartile range (IQR)] distance between centroids (DC) was 5.41 [5.0] mm, the Dice similarity coefficient (DSC) was 0.78 [0.11], the mean surface-to-surface distance (MSSD) was 3.20 [1.8] mm, and the uniform margin of 95% (UM95) was 4.04 [5.8] mm. There was no correlation between image quality and manual contour agreement. AGS failed to give a result in 19.3% of cases. For the remaining cases, the level of agreement between AGS contours and manual contours depended on image quality. There were no significant differences between the AGS segmentations and the manual segmentations on the images that received a quality rating of 3. However, the AGS algorithm had significantly worse agreement with manual contours on images with quality ratings of 1 and 2 compared with the corresponding interobserver manual variation. The overall median [IQR] DC, DSC, MSSD, and UM95 between AGS and manual contours was 5.48 [5.45] mm, 0.77 [0.14], 3.62 [2.7] mm, and 5.19 [8.1] mm, respectively. CONCLUSIONS: The AGS tool was able to represent uterine shape of cervical cancer patients in agreement with manual contouring in cases where the image quality was excellent, but not in cases where image quality was degraded by common artifacts such as shadowing and signal attenuation. The AGS tool should be used with caution for adaptive RT purposes, as it is not reliable in accurately segmenting the uterus on 'good' or 'poor' quality images. The interobserver agreement between manual contours of the uterus drawn on 3D US was consistent with results of similar studies performed on CT and MRI images.


Assuntos
Algoritmos , Imageamento Tridimensional , Ultrassonografia de Intervenção , Neoplasias do Colo do Útero/radioterapia , Feminino , Humanos , Reprodutibilidade dos Testes , Ultrassonografia
7.
Med Phys ; 43(8): 4628, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27487879

RESUMO

PURPOSE: To quantify the performance of the Clarity ultrasound (US) imaging system (Elekta AB, Stockholm, Sweden) for real-time dynamic multileaf collimator (MLC) tracking. METHODS: The Clarity calibration and quality assurance phantom was mounted on a motion platform moving with a periodic sine wave trajectory. The detected position of a 30 mm hypoechogenic sphere within the phantom was continuously reported via Clarity's real-time streaming interface to an in-house tracking and delivery software and subsequently used to adapt the MLC aperture. A portal imager measured MV treatment field/MLC apertures and motion platform positions throughout each experiment to independently quantify system latency and geometric error. Based on the measured range of latency values, a prostate stereotactic body radiation therapy (SBRT) delivery was performed with three realistic motion trajectories. The dosimetric impact of system latency on MLC tracking was directly measured using a 3D dosimeter mounted on the motion platform. RESULTS: For 2D US imaging, the overall system latency, including all delay times from the imaging and delivery chain, ranged from 392 to 424 ms depending on the lateral sector size. For 3D US imaging, the latency ranged from 566 to 1031 ms depending on the elevational sweep. The latency-corrected geometric root-mean squared error was below 0.75 mm (2D US) and below 1.75 mm (3D US). For the prostate SBRT delivery, the impact of a range of system latencies (400-1000 ms) on the MLC tracking performance was minimal in terms of gamma failure rate. CONCLUSIONS: Real-time MLC tracking based on a noninvasive US input is technologically feasible. Current system latencies are higher than those for x-ray imaging systems, but US can provide full volumetric image data and the impact of system latency was measured to be small for a prostate SBRT case when using a US-like motion input.


Assuntos
Movimento (Física) , Ultrassonografia/métodos , Artefatos , Calibragem , Desenho de Equipamento , Estudos de Viabilidade , Marcadores Fiduciais , Humanos , Masculino , Imagens de Fantasmas , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Radiometria/instrumentação , Radiometria/métodos , Radiocirurgia/métodos , Dosagem Radioterapêutica , Radioterapia Guiada por Imagem/métodos , Software , Fatores de Tempo , Ultrassonografia/instrumentação
8.
Phys Med Biol ; 61(8): R90-137, 2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27002558

RESUMO

Imaging has become an essential tool in modern radiotherapy (RT), being used to plan dose delivery prior to treatment and verify target position before and during treatment. Ultrasound (US) imaging is cost-effective in providing excellent contrast at high resolution for depicting soft tissue targets apart from those shielded by the lungs or cranium. As a result, it is increasingly used in RT setup verification for the measurement of inter-fraction motion, the subject of Part I of this review (Fontanarosa et al 2015 Phys. Med. Biol. 60 R77-114). The combination of rapid imaging and zero ionising radiation dose makes US highly suitable for estimating intra-fraction motion. The current paper (Part II of the review) covers this topic. The basic technology for US motion estimation, and its current clinical application to the prostate, is described here, along with recent developments in robust motion-estimation algorithms, and three dimensional (3D) imaging. Together, these are likely to drive an increase in the number of future clinical studies and the range of cancer sites in which US motion management is applied. Also reviewed are selections of existing and proposed novel applications of US imaging to RT. These are driven by exciting developments in structural, functional and molecular US imaging and analytical techniques such as backscatter tissue analysis, elastography, photoacoustography, contrast-specific imaging, dynamic contrast analysis, microvascular and super-resolution imaging, and targeted microbubbles. Such techniques show promise for predicting and measuring the outcome of RT, quantifying normal tissue toxicity, improving tumour definition and defining a biological target volume that describes radiation sensitive regions of the tumour. US offers easy, low cost and efficient integration of these techniques into the RT workflow. US contrast technology also has potential to be used actively to assist RT by manipulating the tumour cell environment and by improving the delivery of radiosensitising agents. Finally, US imaging offers various ways to measure dose in 3D. If technical problems can be overcome, these hold potential for wide-dissemination of cost-effective pre-treatment dose verification and in vivo dose monitoring methods. It is concluded that US imaging could eventually contribute to all aspects of the RT workflow.


Assuntos
Algoritmos , Movimento , Neoplasias/radioterapia , Radioterapia Guiada por Imagem/métodos , Ultrassonografia/métodos , Humanos
9.
Med Phys ; 43(1): 455, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26745938

RESUMO

PURPOSE: Ultrasound-based motion estimation is an expanding subfield of image-guided radiation therapy. Although ultrasound can detect tissue motion that is a fraction of a millimeter, its accuracy is variable. For controlling linear accelerator tracking and gating, ultrasound motion estimates must remain highly accurate throughout the imaging sequence. This study presents a temporal regularization method for correlation-based template matching which aims to improve the accuracy of motion estimates. METHODS: Liver ultrasound sequences (15-23 Hz imaging rate, 2.5-5.5 min length) from ten healthy volunteers under free breathing were used. Anatomical features (blood vessels) in each sequence were manually annotated for comparison with normalized cross-correlation based template matching. Five sequences from a Siemens Acuson™ scanner were used for algorithm development (training set). Results from incremental tracking (IT) were compared with a temporal regularization method, which included a highly specific similarity metric and state observer, known as the α-ß filter/similarity threshold (ABST). A further five sequences from an Elekta Clarity™ system were used for validation, without alteration of the tracking algorithm (validation set). RESULTS: Overall, the ABST method produced marked improvements in vessel tracking accuracy. For the training set, the mean and 95th percentile (95%) errors (defined as the difference from manual annotations) were 1.6 and 1.4 mm, respectively (compared to 6.2 and 9.1 mm, respectively, for IT). For each sequence, the use of the state observer leads to improvement in the 95% error. For the validation set, the mean and 95% errors for the ABST method were 0.8 and 1.5 mm, respectively. CONCLUSIONS: Ultrasound-based motion estimation has potential to monitor liver translation over long time periods with high accuracy. Nonrigid motion (strain) and the quality of the ultrasound data are likely to have an impact on tracking performance. A future study will investigate spatial uniformity of motion and its effect on the motion estimation errors.


Assuntos
Processamento de Imagem Assistida por Computador , Fígado/diagnóstico por imagem , Fígado/fisiologia , Movimento , Radioterapia Guiada por Imagem , Voluntários Saudáveis , Humanos , Ultrassonografia
10.
Phys Med Biol ; 60(3): R77-114, 2015 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-25592664

RESUMO

In modern radiotherapy, verification of the treatment to ensure the target receives the prescribed dose and normal tissues are optimally spared has become essential. Several forms of image guidance are available for this purpose. The most commonly used forms of image guidance are based on kilovolt or megavolt x-ray imaging. Image guidance can also be performed with non-harmful ultrasound (US) waves. This increasingly used technique has the potential to offer both anatomical and functional information.This review presents an overview of the historical and current use of two-dimensional and three-dimensional US imaging for treatment verification in radiotherapy. The US technology and the implementation in the radiotherapy workflow are described. The use of US guidance in the treatment planning process is discussed. The role of US technology in inter-fraction motion monitoring and management is explained, and clinical studies of applications in areas such as the pelvis, abdomen and breast are reviewed. A companion review paper (O'Shea et al 2015 Phys. Med. Biol. submitted) will extensively discuss the use of US imaging for intra-fraction motion quantification and novel applications of US technology to RT.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Ultrassonografia/métodos , Radioterapia Guiada por Imagem/instrumentação , Transdutores , Ultrassonografia/instrumentação
11.
Phys Med Biol ; 59(7): 1701-20, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24619097

RESUMO

This study investigates the use of a mechanically-swept 3D ultrasound (3D-US) probe for soft-tissue displacement monitoring during prostate irradiation, with emphasis on quantifying the accuracy relative to CyberKnife® x-ray fiducial tracking. An US phantom, implanted with x-ray fiducial markers was placed on a motion platform and translated in 3D using five real prostate motion traces acquired using the Calypso system. Motion traces were representative of all types of motion as classified by studying Calypso data for 22 patients. The phantom was imaged using a 3D swept linear-array probe (to mimic trans-perineal imaging) and, subsequently, the kV x-ray imaging system on CyberKnife. A 3D cross-correlation block-matching algorithm was used to track speckle in the ultrasound data. Fiducial and US data were each compared with known phantom displacement. Trans-perineal 3D-US imaging could track superior-inferior (SI) and anterior-posterior (AP) motion to ≤0.81 mm root-mean-square error (RMSE) at a 1.7 Hz volume rate. The maximum kV x-ray tracking RMSE was 0.74 mm, however the prostate motion was sampled at a significantly lower imaging rate (mean: 0.04 Hz). Initial elevational (right-left; RL) US displacement estimates showed reduced accuracy but could be improved (RMSE <2.0 mm) using a correlation threshold in the ultrasound tracking code to remove erroneous inter-volume displacement estimates. Mechanically-swept 3D-US can track the major components of intra-fraction prostate motion accurately but exhibits some limitations. The largest US RMSE was for elevational (RL) motion. For the AP and SI axes, accuracy was sub-millimetre. It may be feasible to track prostate motion in 2D only. 3D-US also has the potential to improve high tracking accuracy for all motion types. It would be advisable to use US in conjunction with a small (∼2.0 mm) centre-of-mass displacement threshold in which case it would be possible to take full advantage of the accuracy and high imaging rate capability.


Assuntos
Marcadores Fiduciais , Imageamento Tridimensional/instrumentação , Movimento , Imagens de Fantasmas , Próstata/diagnóstico por imagem , Radiocirurgia , Tomografia Computadorizada por Raios X/instrumentação , Fracionamento da Dose de Radiação , Humanos , Masculino , Próstata/fisiopatologia , Próstata/cirurgia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/fisiopatologia , Neoplasias da Próstata/cirurgia , Tomografia Computadorizada por Raios X/normas , Ultrassonografia
12.
Phys Med Biol ; 56(23): 7621-38, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22086242

RESUMO

An extendable x-ray multi-leaf collimator (eMLC) is investigated for collimation of electron beams on a linear accelerator. The conventional method of collimation using an electron applicator is impractical for conformal, modulated and mixed beam therapy techniques. An eMLC would allow faster, more complex treatments with potential for reduction in dose to organs-at-risk and critical structures. The add-on eMLC was modelled using the EGSnrc Monte Carlo code and validated against dose measurements at 6-21 MeV with the eMLC mounted on a Siemens Oncor linear accelerator at 71.6 and 81.6 cm source-to-collimator distances. Measurements and simulations at 8.4-18.4 cm airgaps showed agreement of 2%/2 mm. The eMLC dose profiles and percentage depth dose curves were compared with standard electron applicator parameters. The primary differences were a wider penumbra and up to 4.2% reduction in the build-up dose at 0.5 cm depth, with dose normalized on the central axis. At 90 cm source-to-surface distance (SSD)--relevant to isocentric delivery--the applicator and eMLC penumbrae agreed to 0.3 cm. The eMLC leaves, which were 7 cm thick, contributed up to 6.3% scattered electron dose at the depth of maximum dose for a 10 × 10 cm2 field, with the thick leaves effectively eliminating bremsstrahlung leakage. A Monte Carlo calculated wedge shaped dose distribution generated with all six beam energies matched across the maximum available eMLC field width demonstrated a therapeutic (80% of maximum dose) depth range of 2.1-6.8 cm. Field matching was particularly challenging at lower beam energies (6-12 MeV) due to the wider penumbrae and angular distribution of electron scattering. An eMLC isocentric electron breast boost was planned and compared with the conventional applicator fixed SSD plan, showing similar target coverage and dose to critical structures. The mean dose to the target differed by less than 2%. The low bremsstrahlung dose from the 7 cm thick MLC leaves had the added advantage of reducing the mean dose to the whole heart. Isocentric delivery using an extendable eMLC means that treatment room re-entry and repositioning the patient for SSD set-up is unnecessary. Monte Carlo simulation can accurately calculate the fluence below the eMLC and subsequent patient dose distributions. The eMLC generates similar dose distributions to the standard electron applicator but provides a practical method for more complex electron beam delivery.


Assuntos
Elétrons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Aceleração , Humanos , Método de Monte Carlo , Imagens de Fantasmas , Radiometria , Dosagem Radioterapêutica , Reprodutibilidade dos Testes
13.
Med Phys ; 38(6): 3260-9, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21815400

RESUMO

PURPOSE: Monte Carlo (MC) simulation can be used for accurate electron beam treatment planning and modeling. Measurement of large electron fields, with the applicator removed and secondary collimator wide open, has been shown to provide accurate simulation parameters, including asymmetry in the measured dose, for the full range of clinical field sizes and patient positions. Recently, disassembly of the treatment head of a linear accelerator has been used to refine the simulation of the electron beam, setting tightly measured constraints on source and geometry parameters used in simulation. The simulation did not explicitly include the known deflection of the electron beam by a fringe magnetic field from the bending magnet, which extended into the treatment head. Instead, the secondary scattering foil and monitor chamber were unrealistically laterally offset to account for the beam deflection. This work is focused on accounting for this fringe magnetic field in treatment head simulation. METHODS: The magnetic field below the exit window of a Siemens Oncor linear accelerator was measured with a Tesla-meter from 0 to 12 cm from the exit window and 1-3 cm off-axis. Treatment head simulation was performed with the EGSnrc/BEAMnrc code, modified to incorporate the effect of the magnetic field on charged particle transport. Simulations were used to analyze the sensitivity of dose profiles to various sources of asymmetry in the treatment head. This included the lateral spot offset and beam angle at the exit window, the fringe magnetic field and independent lateral offsets of the secondary scattering foil and electron monitor chamber. Simulation parameters were selected within the limits imposed by measurement uncertainties. Calculated dose distributions were then compared with those measured in water. RESULTS: The magnetic field was a maximum at the exit window, increasing from 0.006 T at 6 MeV to 0.020 T at 21 MeV and dropping to approximately 5% of the maximum at the secondary scattering foil. It was up to three times higher in the bending plane, away from the electron gun, and symmetric within measurement uncertainty in the transverse plane. Simulations showed the magnetic field resulted in an offset of the electron beam of 0.80 cm (mean) at the machine isocenter for the exit window only configuration. The fringe field resulted in a 3.5%-7.6% symmetry and 0.25-0.35 cm offset of the clinical beam R(max) profiles. With the magnetic field included in simulations, a single (realistic) position of the secondary scattering foil and monitor chamber was selected. Measured and simulated dose profiles showed agreement to an average of 2.5%/0.16 cm (maximum: 3%/0.2 cm), which is a better match than previously achieved without incorporating the magnetic field in the simulation. The undulations from the 3 stepped layers of the secondary scattering foil, evident in the measured profiles of the higher energy beams, are now aligned with those in the simulated beam. The simulated fringe magnetic field had negligible effect on the central axis depth dose curves and cross-plane dose profiles. CONCLUSIONS: The fringe magnetic field is a significant contributor to the electron beam in-plane asymmetry. With the magnetic field included explicitly in the simulation, realistic monitor chamber and secondary scattering foil positions have been achieved, and the calculated fluence and dose distributions are more accurate.


Assuntos
Aceleração , Cabeça , Magnetismo , Método de Monte Carlo , Radioterapia Assistida por Computador/instrumentação , Humanos , Dosagem Radioterapêutica
14.
Phys Med Biol ; 55(14): 4083-105, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20601775

RESUMO

Monte Carlo simulation can accurately calculate electron fluence at the patient surface and the resultant dose deposition if the initial source electron beam and linear accelerator treatment head geometry parameters are well characterized. A recent approach used large electron fields to extract these simulation parameters. This method took advantage of the absence of lower energy, widely scattered electrons from the applicator resulting in more accurate data. It is important to validate these simulation parameters for clinically relevant fields. In the current study, these simulation parameters are applied to fields collimated by applicators and inserts to perform a comprehensive validation. Measurements were performed on a Siemens Oncor linear accelerator for 6 MeV, 9 MeV, 12 MeV, 15 MeV, 18 MeV and 21 MeV electron beams and collimators ranging from an open 25 x 25 cm(2) applicator to a 10 x 10 cm(2) applicator with a 1 cm diameter cerrobend insert. Data were collected for inserts placed in four square applicators. Monte Carlo simulations were performed using EGSnrc/BEAMnrc. Source and geometry parameters were obtained from previous measurements and simulations with the maximum field size (40 x 40 cm(2)). The applicators were modelled using manufacturer specifications, confirmed by direct measurements. Cerrobend inserts were modelled based on calliper measurements. Monte Carlo-calculated percentage depth dose and off-axis profiles agreed with measurements to within the least restrictive of 2%/1 mm in most cases. For the largest applicator (25 x 25 cm(2)), and 18 MeV and 21 MeV beams, differences in dose profiles of 3% were observed. Calculated relative output factors were within 2% of those measured with an electron diode for fields 1.5 cm in diameter or larger. The disagreement for 1 cm diameter fields was up to 5%. For open applicators, simulations agreed with parallel plate chamber-measured relative output factors to 1%. This work has validated a recent methodology used to extract data on the electron source and treatment head from large electron fields, resulting in a reduction in the number of unknown parameters in treatment head simulation. Applicator and insert collimated electron fields were accurately simulated without adjusting these parameters. Results demonstrate that commissioning of electron beams based on large electron field measurements is a viable option.


Assuntos
Simulação por Computador , Elétrons/uso terapêutico , Método de Monte Carlo , Radioterapia/métodos , Estudos de Viabilidade , Aceleradores de Partículas/instrumentação , Radiometria , Radioterapia/instrumentação , Dosagem Radioterapêutica , Água
15.
Med Phys ; 36(10): 4577-91, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19928089

RESUMO

PURPOSE: The purposes of this study are to improve the accuracy of source and geometry parameters used in the simulation of large electron fields from a clinical linear accelerator and to evaluate improvement in the accuracy of the calculated dose distributions. METHODS: The monitor chamber and scattering foils of a clinical machine not in clinical service were removed for direct measurement of component geometry. Dose distributions were measured at various stages of reassembly, reducing the number of geometry variables in the simulation. The measured spot position and beam angle were found to vary with the beam energy. A magnetic field from the bending magnet was found between the exit window and the secondary collimators of sufficient strength to deflect electrons 1 cm off the beam axis at 100 cm from the exit window. The exit window was 0.05 cm thicker than manufacturer's specification, with over half of the increased thickness due to water pressure in the channel used to cool the window. Dose distributions were calculated with Monte Carlo simulation of the treatment head and water phantom using EGSnrc, a code benchmarked at radiotherapy energies for electron scatter and bremsstrahlung production, both critical to the simulation. The secondary scattering foil and monitor chamber offset from the collimator rotation axis were allowed to vary with the beam energy in the simulation to accommodate the deflection of the beam by the magnetic field, which was not simulated. RESULTS: The energy varied linearly with bending magnet current to within 1.4% from 6.7 to 19.6 MeV, the bending magnet beginning to saturate at the highest beam energy. The range in secondary foil offset used to account for the magnetic field was 0.09 cm crossplane and 0.15 cm inplane, the range in monitor chamber offset was 0.14 cm crossplane and 0.07 cm inplane. A 1.5%/0.09 cm match or better was obtained to measured depth dose curves. Profiles measured at the depth of maximum dose matched the simulated profiles to 2.6% or better at doses of 80% or more of the dose on the central axis. The profiles along the direction of MLC motion agreed to within 0.16 cm at the edge of the field. There remained a mismatch for the lower beam energies at the edge of the profile that ran parallel to the direction of jaw motion of up to 1.4 cm for the 6 MeV beam, attributed to the MLC support block at the periphery of the field left out of the simulation and to beam deflection by the magnetic field. The possibility of using these results to perform accurate simulation without disassembly is discussed. Phase-space files were made available for benchmarking beam models and other purposes. CONCLUSIONS: The match to measured large field dose distributions from clinical electron beams with Monte Carlo simulation was improved with more accurate source details and geometry details closer to manufacturer's specification than previously achieved.


Assuntos
Aceleradores de Partículas/instrumentação , Radiometria/métodos , Radioterapia Conformacional/instrumentação , Transdutores , Elétrons/uso terapêutico , Desenho de Equipamento , Análise de Falha de Equipamento , Dosagem Radioterapêutica
16.
J Appl Clin Med Phys ; 9(4): 57-67, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-19020487

RESUMO

Electron-beam therapy is used to treat superficial tumors at a standard 100 cm source-to-surface distance (SSD). However, certain clinical situations require the use of an extended SSD. In the present study, Monte Carlo methods were used to investigate clinical electron beams, at standard and non-standard SSDs, from a Siemens Oncor Avant Garde (Siemens Healthcare, Erlangen, Germany) linear accelerator (LINAC). The LINAC treatment head was modeled in BEAMnrc for electron fields 5 cm in diameter and 10 x 10 cm, 15 x 15 cm, and 20 x 20 cm; for 6 MeV, 9 MeV, and 12 MeV; and for 100 cm, 110 cm, and 120 cm SSD. The DOSXYZnrc code was used to calculate extended SSD factors and dose contributions from various parts of the treatment head. The main effects of extended SSD on water phantom dose distributions were verified by Monte Carlo methods. Monte Carlo-calculated and measured extended SSD factors showed an average difference of +/-1.8%. For the field 5 cm in diameter, the relative output at extended SSD declined more rapidly than it did for the larger fields. An investigation of output contributions showed this decline was mainly a result of a rapid loss of scatter dose reaching the d max point from the lower scrapers of the electron applicator. The field 5 cm in diameter showed a reduction in dose contributions; the larger fields generally showed an increased contribution from the scrapers with increase in SSD. Angular distributions of applicator-scattered electrons have shown a large number of acute-angle electron tracks contributing to the output for larger field sizes, explaining the shallow output reduction.


Assuntos
Elétrons , Aceleradores de Partículas/instrumentação , Radioterapia/instrumentação , Algoritmos , Desenho de Equipamento , Humanos , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Radioterapia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Alta Energia , Espalhamento de Radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA