Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38892038

RESUMO

The effects of the enzyme N-acetylgalactosamine-4-sulfatase (Arylsulfatase B, ARSB), which removes the 4-sulfate group at the non-reducing end of chondroitin 4-sulfate, on the expression of PD-L1 were determined, and the underlying mechanism of PD-L1 expression was elucidated. Initial experiments in human melanoma cells (A375) showed that PD-L1 expression increased from 357 ± 31 to 796 ± 50 pg/mg protein (p < 10-11) when ARSB was silenced in A375 cells. In subcutaneous B16F10 murine melanomas, PD-L1 declined from 1227 ± 189 to 583 ± 110 pg/mg protein (p = 1.67 × 10-7), a decline of 52%, following treatment with exogenous, bioactive recombinant ARSB. This decline occurred in association with reduced tumor growth and prolongation of survival, as previously reported. The mechanism of regulation of PD-L1 expression by ARSB is attributed to ARSB-mediated alteration in chondroitin 4-sulfation, leading to changes in free galectin-3, c-Jun nuclear localization, HDAC3 expression, and effects of acetyl-H3 on the PD-L1 promoter. These findings indicate that changes in ARSB contribute to the expression of PD-L1 in melanoma and can thereby affect the immune checkpoint response. Exogenous ARSB acted on melanoma cells and normal melanocytes through the IGF2 receptor. The decline in PD-L1 expression by exogenous ARSB may contribute to the impact of ARSB on melanoma progression.


Assuntos
Antígeno B7-H1 , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Histona Desacetilases , Melanoma Experimental , Melanoma , N-Acetilgalactosamina-4-Sulfatase , Animais , Humanos , Camundongos , N-Acetilgalactosamina-4-Sulfatase/metabolismo , N-Acetilgalactosamina-4-Sulfatase/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/genética , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Linhagem Celular Tumoral , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Melanoma Experimental/genética , Melanoma/metabolismo , Melanoma/genética , Melanoma/patologia , Galectina 3/metabolismo , Galectina 3/genética , Regiões Promotoras Genéticas , Proteínas Sanguíneas , Galectinas
3.
Sci Adv ; 10(7): eadi5501, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38354243

RESUMO

Osteoarthritis (OA) is characterized by cartilage damage, inflammation, and pain. Vascular endothelial growth factor receptors (VEGFRs) have been associated with OA severity, suggesting that inhibitors targeting these receptors alleviate pain (via VEGFR1) or cartilage degeneration (via VEGFR2). We have developed a nanoparticle-based formulation of pazopanib (Votrient), an FDA-approved anticancer drug that targets both VEGFR1 and VEGFR2 (Nano-PAZII). We demonstrate that a single intraarticular injection of Nano-PAZII can effectively reduce joint pain for a prolonged time without substantial side effects in two different preclinical OA rodent models involving either surgical (upon partial medial meniscectomy) or nonsurgical induction (with monoiodoacetate). The injection of Nano-PAZII blocks VEGFR1 and relieves OA pain by suppressing sensory neuronal ingrowth into the knee synovium and neuronal plasticity in the dorsal root ganglia and spinal cord. Simultaneously, the inhibition of VEGFR2 reduces cartilage degeneration. These findings provide a mechanism-based disease-modifying drug strategy that addresses both pain symptoms and cartilage loss in OA.


Assuntos
Osteoartrite , Fator A de Crescimento do Endotélio Vascular , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite/etiologia , Osteoartrite/metabolismo , Dor/tratamento farmacológico , Dor/etiologia , Articulação do Joelho/metabolismo , Artralgia , Modelos Animais de Doenças
4.
Gene ; 893: 147920, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37890601

RESUMO

Pain is the prime symptom of osteoarthritis (OA) that directly affects the quality of life. Protein kinase Cδ (PKCδ/Prkcd) plays a critical role in OA pathogenesis; however, its significance in OA-related pain is not entirely understood. The present study investigated the functional role of PKCδ in OA pain sensation. OA was surgically induced in control (Prkcdfl/fl), global- (Prkcdfl/fl; ROSACreERT2), and sensory neuron-specific conditional knockout (cKO) mice (Prkcdfl/fl; NaV1.8/Scn10aCreERT2) followed by comprehensive analysis of longitudinal behavioral pain, histopathology and immunofluorescence studies. GlobalPrkcd cKO mice prevented cartilage deterioration by inhibiting matrix metalloproteinase-13 (MMP13) in joint tissues but significantly increased OA pain. Sensory neuron-specificdeletion of Prkcd in mice did not protect cartilage from degeneration but worsened OA-associated pain. Exacerbated pain sensitivity observed in global- and sensory neuron-specific cKO of Prkcd was corroborated with markedly increased specific pain mediators in knee synovium and dorsal root ganglia (DRG). These specific pain markers include nerve growth factor (NGF) and vascular endothelial growth factor (VEGF), and their cognate receptors, including tropomyosin receptor kinase A (TrkA) and vascular endothelial growth factor receptor-1 (VEGFR1). The increased levels of NGF/TrkA and VEGF/VEGFR1 were comparable in both global- and sensory neuron-specific cKO groups. These data suggest that the absence of Prkcd gene expression in the sensory neurons is strongly associated with OA hyperalgesia independent of cartilage protection. Thus, inhibition of PKCδ may be beneficial for cartilage homeostasis but could aggravate OA-related pain symptoms.


Assuntos
Hiperalgesia , Osteoartrite , Animais , Camundongos , Modelos Animais de Doenças , Hiperalgesia/genética , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/metabolismo , Osteoartrite/metabolismo , Dor/complicações , Dor/genética , Qualidade de Vida , Fator A de Crescimento do Endotélio Vascular/genética
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(1): 166913, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37813168

RESUMO

In the syngeneic, subcutaneous B16F10 mouse model of malignant melanoma, treatment with exogenous ARSB markedly reduced tumor size and extended survival. In vivo experiments showed that local treatment with exogenous N-acetylgalactosamine-4-sulfatase (Arylsulfatase B; ARSB) led to reduced tumor growth over time (p < 0.0001) and improved the probability of survival up to 21 days (p = 0.0391). Tumor tissue from the treated mice had lower chondroitin 4-sulfate (C4S) content and lower sulfotransferase activity. The free galectin-3 declined, and the SHP2 activity increased, due to altered binding with chondroitin 4-sulfate. These changes induced effects on transcription, which were mediated by Sp1, phospho-ERK1/2, and phospho-p38 MAPK. Reduced mRNA expression of chondroitin sulfate proteoglycan 4 (CSPG4), carbohydrate sulfotransferase 15 (N-acetylgalactosamine 4-sulfate 6-O-sulfotransferase), and matrix metalloproteinases 2 and 9 resulted. Experiments in the human melanoma cell line A375 demonstrated similar responses to exogenous ARSB as in the tumors, and inverse effects followed ARSB siRNA. ARSB, which removes the 4-sulfate group at the non-reducing end of C4S, acts as a tumor suppressor, and treatment with exogenous ARSB impacts on vital cell signaling and reduces the expression of critical genes associated with melanoma progression.


Assuntos
Melanoma , N-Acetilgalactosamina-4-Sulfatase , Neoplasias Cutâneas , Animais , Humanos , Camundongos , Sulfatos de Condroitina/metabolismo , Melanoma/tratamento farmacológico , N-Acetilgalactosamina-4-Sulfatase/genética , N-Acetilgalactosamina-4-Sulfatase/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/tratamento farmacológico , Melanoma Maligno Cutâneo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA