Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36987313

RESUMO

Alkaline anion exchange membranes (AAEMs) are an enabling component for next-generation electrochemical devices, including alkaline fuel cells, water and CO2 electrolyzers, and flow batteries. While commercial systems, notably fuel cells, have traditionally relied on proton-exchange membranes, hydroxide-ion conducting AAEMs hold promise as a method to reduce cost-per-device by enabling the use of non-platinum group electrodes and cell components. AAEMs have undergone significant material development over the past two decades; however, challenges remain in the areas of durability, water management, high temperature performance, and selectivity. In this review, we survey crosslinking as a tool capable of tuning AAEM properties. While crosslinking implementations vary, they generally result in reduced water uptake and increased transport selectivity and alkaline stability. We survey synthetic methodologies for incorporating crosslinks during AAEM fabrication and highlight necessary precautions for each approach.

2.
J Am Chem Soc ; 143(36): 14712-14725, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34472346

RESUMO

Bridging polymer design with catalyst surface science is a promising direction for tuning and optimizing electrochemical reactors that could impact long-term goals in energy and sustainability. Particularly, the interaction between inorganic catalyst surfaces and organic-based ionomers provides an avenue to both steer reaction selectivity and promote activity. Here, we studied the role of imidazolium-based ionomers for electrocatalytic CO2 reduction to CO (CO2R) on Ag surfaces and found that they produce no effect on CO2R activity yet strongly promote the competing hydrogen evolution reaction (HER). By examining the dependence of HER and CO2R rates on concentrations of CO2 and HCO3-, we developed a kinetic model that attributes HER promotion to intrinsic promotion of HCO3- reduction by imidazolium ionomers. We also show that varying the ionomer structure by changing substituents on the imidazolium ring modulates the HER promotion. This ionomer-structure dependence was analyzed via Taft steric parameters and density functional theory calculations, which suggest that steric bulk from functionalities on the imidazolium ring reduces access of the ionomer to both HCO3- and the Ag surface, thus limiting the promotional effect. Our results help develop design rules for ionomer-catalyst interactions in CO2R and motivate further work into precisely uncovering the interplay between primary and secondary coordination in determining electrocatalytic behavior.

3.
Polymers (Basel) ; 13(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34300996

RESUMO

Recent advances in additive manufacturing, specifically direct ink writing (DIW) and ink-jetting, have enabled the production of elastomeric silicone parts with deterministic control over the structure, shape, and mechanical properties. These new technologies offer rapid prototyping advantages and find applications in various fields, including biomedical devices, prosthetics, metamaterials, and soft robotics. Stereolithography (SLA) is a complementary approach with the ability to print with finer features and potentially higher throughput. However, all high-performance silicone elastomers are composites of polysiloxane networks reinforced with particulate filler, and consequently, silicone resins tend to have high viscosities (gel- or paste-like), which complicates or completely inhibits the layer-by-layer recoating process central to most SLA technologies. Herein, the design and build of a digital light projection SLA printer suitable for handling high-viscosity resins is demonstrated. Further, a series of UV-curable silicone resins with thiol-ene crosslinking and reinforced by a combination of fumed silica and MQ resins are also described. The resulting silicone elastomers are shown to have tunable mechanical properties, with 100-350% elongation and ultimate tensile strength from 1 to 2.5 MPa. Three-dimensional printed features of 0.4 mm were achieved, and complexity is demonstrated by octet-truss lattices that display negative stiffness.

4.
Adv Mater ; 33(7): e2003855, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33448061

RESUMO

The electrosynthesis of value-added multicarbon products from CO2 is a promising strategy to shift chemical production away from fossil fuels. Particularly important is the rational design of gas diffusion electrode (GDE) assemblies to react selectively, at scale, and at high rates. However, the understanding of the gas diffusion layer (GDL) in these assemblies is limited for the CO2 reduction reaction (CO2 RR): particularly important, but incompletely understood, is how the GDL modulates product distributions of catalysts operating in high current density regimes > 300 mA cm-2 . Here, 3D-printable fluoropolymer GDLs with tunable microporosity and structure are reported and probe the effects of permeance, microstructural porosity, macrostructure, and surface morphology. Under a given choice of applied electrochemical potential and electrolyte, a 100× increase in the C2 H4 :CO ratio due to GDL surface morphology design over a homogeneously porous equivalent and a 1.8× increase in the C2 H4 partial current density due to a pyramidal macrostructure are observed. These findings offer routes to improve CO2 RR GDEs as a platform for 3D catalyst design.

5.
RSC Adv ; 11(37): 22633-22639, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35480472

RESUMO

Nanofabrication techniques that can generate large and complex 3D structures with nanoscale features are becoming increasingly important in the fields of biomedicine, micro-optics, and microfluidics. Direct laser writing via two-photon polymerization (DLW-TPP) is one such technique that relies on nonlinear absorption of light to form nanoscale 3D features. Although DLW-TPP provides the required nanoscale resolution, its built height is often limited to less than a millimetre. This height limitation is driven by the need to tightly focus the laser beam at arbitrary depths within the photopolymer. This requirement necessitates matching the photopolymer's refractive index to specific values but the required techniques have not been disseminated widely in the open scientific literature. To address this knowledge gap, we test two universal, different approaches to generate refractive index-matched polymeric and preceramic resins and demonstrate their performance by printing of fine submicron features in 3D structures as tall as 2.5 mm. Specifically, we achieve index-matching by mixing commercially-available resins or covalent modification of functional monomers. This work investigates the relationship of voxel shape to RI mismatch, and presents tuning of RI through mixing and covalent modification to a nonconventional material system of preceramic resin which has never been demonstrated before. We demonstrate the material flexibility by generating 3D silicon oxycarbide structures from preceramic resists while simultaneously eliminating the part-height limitation of conventional DLW-TPP.

6.
Adv Mater ; 32(47): e2003376, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33002275

RESUMO

Volumetric additive manufacturing (VAM) forms complete 3D objects in a single photocuring operation without layering defects, enabling 3D printed polymer parts with mechanical properties similar to their bulk material counterparts. This study presents the first report of VAM-printed thiol-ene resins. With well-ordered molecular networks, thiol-ene chemistry accesses polymer materials with a wide range of mechanical properties, moving VAM beyond the limitations of commonly used acrylate formulations. Since free-radical thiol-ene polymerization is not inhibited by oxygen, the nonlinear threshold response required in VAM is introduced by incorporating 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as a radical scavenger. Tuning of the reaction kinetics is accomplished by balancing inhibitor and initiator content. Coupling this with quantitative measurements of the absorbed volumetric optical dose allows control of polymer conversion and gelation during printing. Importantly, this work thereby establishes the first comprehensive framework for spatial-temporal control over volumetric energy distribution, demonstrating structures 3D printed in thiol-ene resin by means of tomographic volumetric VAM. Mechanical characterization of this thiol-ene system, with varied ratios of isocyanurate and triethylene glycol monomers, reveals highly tunable mechanical response far more versatile than identical acrylate-based resins. This broadens the range of materials and properties available for VAM, taking another step toward high-performance printed polymers.

7.
J Phys Chem B ; 124(41): 9204-9215, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32960598

RESUMO

A reactive molecular dynamics approach is used to simulate cross-linking of acrylate polymer networks. By employing the same force field and reactive scheme and studying three representative multifunctional acrylate monomers, we isolate the importance of the nonreactive moieties within these model monomers. Analyses of reactive trajectories benchmark the estimated gel points, cyclomatic character, and spatially resolved cross-linking tendencies of the acrylates as a function of conversion. These insights into the similarities and differences of the polymerization and resulting networks suggest molecular mechanics as a useful tool in the rational design of photopolymerization resins.

8.
Science ; 366(6461): 105-109, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31604310

RESUMO

High-throughput fabrication techniques for generating arbitrarily complex three-dimensional structures with nanoscale features are desirable across a broad range of applications. Two-photon lithography (TPL)-based submicrometer additive manufacturing is a promising candidate to fill this gap. However, the serial point-by-point writing scheme of TPL is too slow for many applications. Attempts at parallelization either do not have submicrometer resolution or cannot pattern complex structures. We overcome these difficulties by spatially and temporally focusing an ultrafast laser to implement a projection-based layer-by-layer parallelization. This increases the throughput up to three orders of magnitude and expands the geometric design space. We demonstrate this by printing, within single-digit millisecond time scales, nanowires with widths smaller than 175 nanometers over an area one million times larger than the cross-sectional area.

9.
Chem Commun (Camb) ; 54(74): 10463-10466, 2018 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-30156229

RESUMO

Compared to tedious, multi-step treatments for electroless gold plating of traditional thermoplastics, this communication describes a simpler three-step procedure for 3D printed crosslinked polyacrylate substrates. This allows for the synthesis of ultralight gold foam microlattice materials with great potential for architecture-sensitive applications in future energy, catalysis, and sensing.

10.
ACS Appl Mater Interfaces ; 10(1): 1164-1172, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29171264

RESUMO

Two-photon lithography (TPL) is a high-resolution additive manufacturing (AM) technique capable of producing arbitrarily complex three-dimensional (3D) microstructures with features 2-3 orders of magnitude finer than human hair. This process finds numerous applications as a direct route toward the fabrication of novel optical and mechanical metamaterials, miniaturized optics, microfluidics, biological scaffolds, and various other intricate 3D parts. As TPL matures, metrology and inspection become a crucial step in the manufacturing process to ensure that the geometric form of the end product meets design specifications. X-ray-based computed tomography (CT) is a nondestructive technique that can provide this inspection capability for the evaluation of complex internal 3D structure. However, polymeric photoresists commonly used for TPL, as well as other forms of stereolithography, poorly attenuate X-rays due to the low atomic number (Z) of their constituent elements and therefore appear relatively transparent during imaging. Here, we present the development of optically clear yet radiopaque photoresists for enhanced contrast under X-ray CT. We have synthesized iodinated acrylate monomers to formulate high-Z photoresist materials that are capable of forming 3D microstructures with sub-150 nm features. In addition, we have developed a formulation protocol to match the refractive index of the photoresists to the immersion medium of the objective lens so as to enable dip-in laser lithography, a direct laser writing technique for producing millimeter-tall structures. Our radiopaque photopolymer resists increase X-ray attenuation by a factor of more than 10 times without sacrificing the sub-150 nm feature resolution or the millimeter-scale part height. Thus, our resists can successfully replace existing photopolymers to generate AM parts that are suitable for inspection via X-ray CT. By providing the "feedstock" for radiopaque AM parts, our resist formulation is expected to play a critical role in enabling fabrication of functional polymer parts to tight design tolerances.

11.
Opt Express ; 24(24): 27077-27086, 2016 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-27906282

RESUMO

Two photon polymerization (TPP) is a precise, reliable, and increasingly popular technique for rapid prototyping of micro-scale parts with sub-micron resolution. The materials of choice underlying this process are predominately acrylic resins cross-linked via free-radical polymerization. Due to the nature of the printing process, the derived parts are only partially cured and the corresponding mechanical properties, i.e. modulus and ultimate strength, are lower than if the material were cross-linked to the maximum extent. Herein, post-print curing via UV-driven radical generation, is demonstrated to increase the overall degree of cross-linking of low density, TPP-derived structures.

12.
Faraday Discuss ; 192: 271-281, 2016 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-27504736

RESUMO

Purpose-designed, water-lean solvents have been developed to improve the energy efficiency of CO2 capture from power plants, including CO2-binding organic liquids (CO2BOLs) and ionic liquids (ILs). Many of these solvents are highly viscous or change phases, posing challenges for conventional process equipment. Such problems can be overcome by encapsulation. Micro-Encapsulated CO2 Sorbents (MECS) consist of a CO2-absorbing solvent or slurry encased in spherical, CO2-permeable polymer shells. The resulting capsules have diameters in the range of 100-600 µm, greatly increasing the surface area and CO2 absorption rate of the encapsulated solvent. Encapsulating these new solvents requires careful selection of shell materials and fabrication techniques. We find several common classes of polymers are not compatible with MECS production, but we develop two custom formulations, a silicone and an acrylate, that show promise for encapsulating water-lean solvents. We make the first demonstration of an encapsulated IL for CO2 capture. The rate of CO2 absorption is enhanced by a factor of 3.5 compared to a liquid film, a value that can be improved by further development of shell materials and fabrication techniques.

13.
Nat Commun ; 7: 11900, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27301270

RESUMO

An industrial process for the selective activation of methane under mild conditions would be highly valuable for controlling emissions to the environment and for utilizing vast new sources of natural gas. The only selective catalysts for methane activation and conversion to methanol under mild conditions are methane monooxygenases (MMOs) found in methanotrophic bacteria; however, these enzymes are not amenable to standard enzyme immobilization approaches. Using particulate methane monooxygenase (pMMO), we create a biocatalytic polymer material that converts methane to methanol. We demonstrate embedding the material within a silicone lattice to create mechanically robust, gas-permeable membranes, and direct printing of micron-scale structures with controlled geometry. Remarkably, the enzymes retain up to 100% activity in the polymer construct. The printed enzyme-embedded polymer motif is highly flexible for future development and should be useful in a wide range of applications, especially those involving gas-liquid reactions.


Assuntos
Bioimpressão , Metano/metabolismo , Metanol/metabolismo , Oxigenases/metabolismo , Reatores Biológicos , Estabilidade Enzimática , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Methylococcus/enzimologia , Material Particulado/química , Polietilenoglicóis/química
14.
Angew Chem Int Ed Engl ; 53(36): 9466-9470, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25100330

RESUMO

High-molecular-weight polysulfates are readily formed from aromatic bis(silyl ethers) and bis(fluorosulfates) in the presence of a base catalyst. The reaction is fast and proceeds well under neat conditions or in solvents, such as dimethyl formamide or N-methylpyrrolidone, to provide the desired polymers in nearly quantitative yield. These polymers are more resistant to chemical degradation than their polycarbonate analogues and exhibit excellent mechanical, optical, and oxygen-barrier properties.


Assuntos
Fluoretos/química , Polímeros/síntese química , Sulfatos/síntese química , Compostos de Enxofre/química , Compostos Benzidrílicos/química , Catálise , Hidrólise , Peso Molecular , Oxigênio/química , Fenóis/química , Polímeros/química , Resistência à Tração
15.
Chemistry ; 20(35): 11101-10, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25059647

RESUMO

(Cyclopentadienyl)(cyclooctadiene) ruthenium(II) chloride [CpRuCl(cod)] catalyzes the reaction between nitrile oxides and electronically deficient 1-choro-, 1-bromo-, and 1-iodoalkynes leading to 4-haloisoxazoles. Organic azides are also suitable 1,3-dipoles, resulting in 5-halo-1,2,3-triazoles. These air-tolerant reactions can be performed at room temperature with 1.25 equivalents of the respective 1,3-dipole relative to the alkyne component. Reactive 1-haloalkynes include propiolic amides, esters, ketones, and phosphonates. Post-functionalization of the halogenated azole products can be accomplished by using palladium-catalyzed cross-coupling reactions and by manipulation of reactive amide groups. The lack of catalysis observed with [Cp*RuCl(cod)] (Cp* = pentamethylcyclopentadienyl) is attributed to steric demands of the Cp* (η(5)-C5Me5) ligand in comparison to the parent Cp (η(5)-C5H5). This hypothesis is supported by the poor reactivity of [(η(5)-C5Me4CF3)RuCl(cod)], which serves as a an isosteric mimic of Cp* and as an isoelectronic analogue of Cp.


Assuntos
Alcinos/química , Azidas/química , Nitrilas/química , Óxidos/química , Rutênio/química , Triazóis/síntese química , Azidas/síntese química , Catálise , Ciclização , Reação de Cicloadição , Estrutura Molecular
17.
Org Lett ; 12(11): 2524-7, 2010 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-20438102

RESUMO

A variety of nucleophiles, thiolates, alkoxides, amines, iodide, and cyanide, react with oxazino-, oxazolino-, and benzoxazin[3,2-b]indazoles under microwave conditions to yield a diverse set of 2-substituted 1H-indazolones. The synthetic utility of these indazoles is further demonstrated by ANRORC (addition of the nucleophile, ring-opening, and ring closure) reactions to yield isomeric pyrazoloindazolones by a process wherein iodide acts first as a nucleophile and subsequently as a leaving group.


Assuntos
Indazóis/química , Indazóis/síntese química , Catálise , Ciclização , Micro-Ondas , Estrutura Molecular , Estereoisomerismo
18.
Org Lett ; 12(5): 1132-4, 2010 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-20148525

RESUMO

Two complementary concise total syntheses of lycogarubin C (1) and lycogalic acid (2, aka chromopyrrolic acid) are detailed utilizing a 1,2,4,5-tetrazine --> 1,2-diazine --> pyrrole Diels-Alder strategy and enlisting acetylenic dienophiles.


Assuntos
Indóis/síntese química , Pirróis/síntese química , Produtos Biológicos/biossíntese , Produtos Biológicos/síntese química , Produtos Biológicos/química , Indóis/química , Indóis/metabolismo , Pirróis/química , Pirróis/metabolismo
19.
Org Lett ; 11(13): 2760-3, 2009 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-19505119

RESUMO

The novel heterocycle 2,3-dihydrooxazolo[3,2-b]indazole has been synthesized and utilized to provide easy access to 1H-indazolones, particularly the previously unreported 2-(2-alkoxyethyl)-1H-indazol-3(2H)-ones. Mechanistic as well as optimization and reaction scope studies are reported.


Assuntos
Indazóis/síntese química , Oxazóis/química , Álcoois/química , Benzilaminas/química , Indazóis/química , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA