Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Res Sq ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38746470

RESUMO

Red blood cells (RBCs), traditionally recognized for their role in transporting oxygen, play a pivotal role in the body's immune response by expressing TLR9 and scavenging excess host cell-free DNA. DNA capture by RBCs leads to accelerated RBC clearance and triggers inflammation. Whether RBCs can also acquire microbial DNA during infections is unknown. Murine RBCs acquire microbial DNA in vitro and bacterial-DNA-induced macrophage activation was augmented by WT but not TLR9-deleted RBCs. In a mouse model of polymicrobial sepsis, RBC-bound bacterial DNA was elevated in WT but not in erythroid TLR9-deleted mice. Plasma cytokine analysis revealed distinct sepsis endotypes, characterized by persistent hypothermia and hyperinflammation in the most severely affected subjects. RBC-TLR9 deletion attenuated plasma and tissue IL-6 production in the most severe endotype. Parallel findings in human subjects confirmed that RBCs from septic patients harbored more bacterial DNA compared to healthy individuals. Further analysis through 16S sequencing of RBC-bound DNA illustrated distinct microbial communities, with RBC-bound DNA composition correlating with plasma IL-6 in patients with sepsis. Collectively, these findings unveil RBCs as overlooked reservoirs and couriers of microbial DNA, capable of influencing host inflammatory responses in sepsis.

2.
Exp Neurol ; 357: 114200, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35952765

RESUMO

High-level spinal cord injury (SCI) often interrupts supraspinal regulation of sympathetic input to the heart. Although it is known that dysregulated autonomic control increases the risk for cardiac disorders, the mechanisms mediating SCI-induced arrhythmias are poorly understood. Here, we employed a rat model of complete spinal cord crush injury at the 2nd/3rd thoracic (T2/3) level to investigate cardiac rhythm disorders resulting from SCI. Rats with T9 injury and naïve animals served as two controls. Four weeks after SCI, rats were implanted with a radio-telemetric device for electrocardiogram and blood pressure monitoring. During 24-h recordings, heart rate variability in rats with T2/3 but not T9 injury exhibited a significant reduction in the time domain, and a decrease in power at low frequency but increased power at high frequency in the frequency domain which indicates reduced sympathetic and increased parasympathetic outflow to the heart. Pharmacological blockade of the sympathetic or parasympathetic branches confirmed the imbalance of cardiac autonomic control. Activation of sympatho-vagal input during the induction of autonomic dysreflexia by colorectal distention triggered various severe arrhythmic events in T2/3 injured rats. Meanwhile, intravenous infusion of the ß1-adrenergic receptor agonist, dobutamine, caused greater incidence of arrhythmias in rats with T2/3 injury than naïve and T9 injured controls. Together, the results indicate that high-level SCI increases the susceptibility to developing cardiac arrhythmias likely owing to compromised autonomic homeostasis. The T2/3 crush model is appropriate for studying abnormal cardiac electrophysiology resulting from SCI.


Assuntos
Disreflexia Autonômica , Lesões por Esmagamento , Traumatismos da Medula Espinal , Animais , Arritmias Cardíacas/complicações , Disreflexia Autonômica/etiologia , Pressão Sanguínea/fisiologia , Lesões por Esmagamento/complicações , Ratos , Medula Espinal , Traumatismos da Medula Espinal/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA