Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
bioRxiv ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38712030

RESUMO

Introduction: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within the non-Hispanic White (NHW) population. Here we aimed to provide comprehensive insights into the proteomic landscape of AD across diverse racial and ethnic groups. Methods: Dorsolateral prefrontal cortex (DLPFC) and superior temporal gyrus (STG) brain tissues were donated from multiple centers (Mayo Clinic, Emory University, Rush University, Mt. Sinai School of Medicine) and were harmonized through neuropathological evaluation, specifically adhering to the Braak staging and CERAD criteria. Among 1105 DLPFC tissue samples (998 unique individuals), 333 were from African American donors, 223 from Latino Americans, 529 from NHW donors, and the rest were from a mixed or unknown racial background. Among 280 STG tissue samples (244 unique individuals), 86 were African American, 76 Latino American, 116 NHW and the rest were mixed or unknown ethnicity. All tissues were uniformly homogenized and analyzed by tandem mass tag mass spectrometry (TMT-MS). Results: As a Quality control (QC) measure, proteins with more than 50% missing values were removed and iterative principal component analysis was conducted to remove outliers within brain regions. After QC, 9,180 and 9,734 proteins remained in the DLPC and STG proteome, respectively, of which approximately 9,000 proteins were shared between regions. Protein levels of microtubule-associated protein tau (MAPT) and amyloid-precursor protein (APP) demonstrated AD-related elevations in DLPFC tissues with a strong association with CERAD and Braak across racial groups. APOE4 protein levels in brain were highly concordant with APOE genotype of the individuals. Discussion: This comprehensive region resolved large-scale proteomic dataset provides a resource for the understanding of ethnoracial-specific protein differences in AD brain.

2.
bioRxiv ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38659743

RESUMO

INTRODUCTION: Multi-omics studies in Alzheimer's disease (AD) revealed many potential disease pathways and therapeutic targets. Despite their promise of precision medicine, these studies lacked African Americans (AA) and Latin Americans (LA), who are disproportionately affected by AD. METHODS: To bridge this gap, Accelerating Medicines Partnership in AD (AMP-AD) expanded brain multi-omics profiling to multi-ethnic donors. RESULTS: We generated multi-omics data and curated and harmonized phenotypic data from AA (n=306), LA (n=326), or AA and LA (n=4) brain donors plus Non-Hispanic White (n=252) and other (n=20) ethnic groups, to establish a foundational dataset enriched for AA and LA participants. This study describes the data available to the research community, including transcriptome from three brain regions, whole genome sequence, and proteome measures. DISCUSSION: Inclusion of traditionally underrepresented groups in multi-omics studies is essential to discover the full spectrum of precision medicine targets that will be pertinent to all populations affected with AD.

3.
Mol Neurodegener ; 18(1): 2, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36609403

RESUMO

BACKGROUND: Alzheimer's disease (AD) is neuropathologically characterized by amyloid-beta (Aß) plaques and neurofibrillary tangles. The main protein components of these hallmarks include Aß40, Aß42, tau, phosphor-tau, and APOE. We hypothesize that genetic variants influence the levels and solubility of these AD-related proteins in the brain; identifying these may provide key insights into disease pathogenesis. METHODS: Genome-wide genotypes were collected from 441 AD cases, imputed to the haplotype reference consortium (HRC) panel, and filtered for quality and frequency. Temporal cortex levels of five AD-related proteins from three fractions, buffer-soluble (TBS), detergent-soluble (Triton-X = TX), and insoluble (Formic acid = FA), were available for these same individuals. Variants were tested for association with each quantitative biochemical measure using linear regression, and GSA-SNP2 was used to identify enriched Gene Ontology (GO) terms. Implicated variants and genes were further assessed for association with other relevant variables. RESULTS: We identified genome-wide significant associations at seven novel loci and the APOE locus. Genes and variants at these loci also associate with multiple AD-related measures, regulate gene expression, have cell-type specific enrichment, and roles in brain health and other neuropsychiatric diseases. Pathway analysis identified significant enrichment of shared and distinct biological pathways. CONCLUSIONS: Although all biochemical measures tested reflect proteins core to AD pathology, our results strongly suggest that each have unique genetic architecture and biological pathways that influence their specific biochemical states in the brain. Our novel approach of deep brain biochemical endophenotype GWAS has implications for pathophysiology of proteostasis in AD that can guide therapeutic discovery efforts focused on these proteins.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Estudo de Associação Genômica Ampla , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Placa Amiloide/patologia , Fenótipo , Apolipoproteínas E/metabolismo , Proteínas tau/metabolismo
5.
Neurol Genet ; 8(2): e655, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35047668

RESUMO

BACKGROUND AND OBJECTIVES: Putative loss-of-function (pLOF) ABCA7 variants that increase Alzheimer disease (AD) risk were identified; however, deep phenotypic characterization of these variants in mutation carriers is limited. We aimed to obtain deep clinical phenotypes of ABCA7 pLOF mutation carriers from a large retrospectively reviewed series. METHODS: Genotypes were determined for 5,353 individuals evaluated at Mayo Clinic for 6 reported ABCA7 pLOF variants (p.E709fs, p.Trp1214X, p.L1403fs, c.4416+2T>G, p.E1679X, and c.5570+5G>C). Medical records of 100 mutation carriers were reviewed for demographics, clinical phenotypes, and diagnoses. Eleven mutation carriers had autopsy-based neuropathologic diagnoses. RESULTS: We confirmed that ABCA7 pLOF mutations confer AD risk in our series of 2,495 participants with AD and 2,858 cognitively unaffected participants. Clinical review of 100 mutation carriers demonstrated phenotypic variability of clinical presentations with both memory and nonmemory cognitive impairment and a subset presenting with motor symptoms. There was a wide range of age at onset of cognitive symptoms (ages 56-92 years, mean = 75.6). Ten of the 11 autopsied mutation carriers had AD neuropathology. ABCA7 pLOF mutation carriers had higher rates of depression (41.6%) and first-degree relatives with cognitive impairment (38.1%) compared with the general population. DISCUSSION: Our study provides a deep clinical review of phenotypic characteristics of mutation carriers for 6 ABCA7 pLOF mutations. Although memory impairment was the most common initial symptom, nonmemory cognitive and/or motor symptoms were present in a substantial number of mutation carriers, highlighting the heterogeneity of clinical features associated with these mutations. Likewise, although AD neuropathology is the most common, it is not the only autopsy-based diagnosis. Presence of earlier ages at onset, higher rates of depression, and first-degree relatives with cognitive impairment among mutation carriers suggest that these genetic variants may have more aggressive clinical features than AD in the general population. This deep phenotyping study of ABCA7 pLOF mutation carriers provides essential genotype-phenotype correlations for future precision medicine approaches in the clinical setting.

6.
Alzheimers Dement ; 18(4): 688-699, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34482628

RESUMO

Not all apolipoprotein E (APOE) ε4 carriers who survive to advanced age develop Alzheimer's disease (AD); factors attenuating the risk of ε4 on AD may exist. Guided by the top ε4-attenuating signals from methylome-wide association analyses (N = 572, ε4+ and ε4-) of neurofibrillary tangles and neuritic plaques, we conducted a meta-analysis for pathological AD within the ε4+ subgroups (N = 235) across four independent collections of brains. Cortical RNA-seq and microglial morphology measurements were used in functional analyses. Three out of the four significant CpG dinucleotides were captured by one principal component (PC1), which interacts with ε4 on AD, and is associated with expression of innate immune genes and activated microglia. In ε4 carriers, reduction in each unit of PC1 attenuated the odds of AD by 58% (odds ratio = 2.39, 95% confidence interval = [1.64,3.46], P = 7.08 × 10-6 ). An epigenomic factor associated with a reduced proportion of activated microglia (epigenomic factor of activated microglia, EFAM) appears to attenuate the risk of ε4 on AD.


Assuntos
Doença de Alzheimer , Apolipoproteína E4 , Alelos , Doença de Alzheimer/patologia , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Epigenômica , Genótipo , Humanos , Microglia/patologia , Emaranhados Neurofibrilares/patologia
7.
J Clin Invest ; 132(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34813500

RESUMO

Vast numbers of differentially expressed genes and perturbed networks have been identified in Alzheimer's disease (AD), however, neither disease nor brain region specificity of these transcriptome alterations has been explored. Using RNA-Seq data from 231 temporal cortex and 224 cerebellum samples from patients with AD and progressive supranuclear palsy (PSP), a tauopathy, we identified a striking correlation in the directionality and magnitude of gene expression changes between these 2 neurodegenerative proteinopathies. Further, the transcriptomic changes in AD and PSP brains ware highly conserved between the temporal and cerebellar cortices, indicating that highly similar transcriptional changes occur in pathologically affected and grossly less affected, albeit functionally connected, areas of the brain. Shared up- or downregulated genes in AD and PSP are enriched in biological pathways. Many of these genes also have concordant protein changes and evidence of epigenetic control. These conserved transcriptomic alterations of 2 distinct proteinopathies in brain regions with and without significant gross neuropathology have broad implications. AD and other neurodegenerative diseases are likely characterized by common disease or compensatory pathways with widespread perturbations in the whole brain. These findings can be leveraged to develop multifaceted therapies and biomarkers that address these common, complex, and ubiquitous molecular alterations in neurodegenerative diseases.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Paralisia Supranuclear Progressiva/metabolismo , Transcriptoma , Idoso , Feminino , Humanos , Masculino
8.
Acta Neuropathol Commun ; 9(1): 93, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020725

RESUMO

Cerebral amyloid angiopathy (CAA) contributes to accelerated cognitive decline in Alzheimer's disease (AD) dementia and is a common finding at autopsy. The APOEε4 allele and male sex have previously been reported to associate with increased CAA in AD. To inform biomarker and therapeutic target discovery, we aimed to identify additional genetic risk factors and biological pathways involved in this vascular component of AD etiology. We present a genome-wide association study of CAA pathology in AD cases and report sex- and APOE-stratified assessment of this phenotype. Genome-wide genotypes were collected from 853 neuropathology-confirmed AD cases scored for CAA across five brain regions, and imputed to the Haplotype Reference Consortium panel. Key variables and genome-wide genotypes were tested for association with CAA in all individuals and in sex and APOEε4 stratified subsets. Pathway enrichment was run for each of the genetic analyses. Implicated loci were further investigated for functional consequences using brain transcriptome data from 1,186 samples representing seven brain regions profiled as part of the AMP-AD consortium. We confirmed association of male sex, AD neuropathology and APOEε4 with increased CAA, and identified a novel locus, LINC-PINT, associated with lower CAA amongst APOEε4-negative individuals (rs10234094-C, beta = -3.70 [95% CI -0.49--0.24]; p = 1.63E-08). Transcriptome profiling revealed higher LINC-PINT expression levels in AD cases, and association of rs10234094-C with altered LINC-PINT splicing. Pathway analysis indicates variation in genes involved in neuronal health and function are linked to CAA in AD patients. Further studies in additional and diverse cohorts are needed to assess broader translation of our findings.


Assuntos
Doença de Alzheimer/genética , Apolipoproteína E4/genética , Angiopatia Amiloide Cerebral/genética , Variação Genética/genética , Estudo de Associação Genômica Ampla/métodos , Isoformas de Proteínas/genética , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Angiopatia Amiloide Cerebral/patologia , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Masculino , Pessoa de Meia-Idade
9.
Alzheimers Dement ; 16(Suppl 2)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-34393677

RESUMO

Not all APOE ε4 carriers who survive to advanced age develop Alzheimer's disease (AD); factors attenuating the risk of ε4 on AD may exist. Guided by the top ε4-attenuating signals from methylome-wide association analyses (N=572, ε4+ and ε4-) of neurofibrillary tangles and neuritic plaques, we conducted a meta-analysis for pathological AD within the ε4+ subgroups (N=235) across four independent collections of brains. Cortical RNA-seq and microglial morphology measurements were used in functional analyses. Three out of the four significant CpG dinucleotides were captured by one principle component (PC1), which interacts with ε4 on AD, and is associated with expression of innate immune genes and activated microglia. In ε4 carriers, reduction in each unit of PC1 attenuated the odds of AD by 58% (OR=2.39, 95%CI=[1.64,3.46], P=7.08x10-6). An epigenomic factor associated with a reduced proportion of activated microglia (microglial epigenomic factor 1) appears to attenuate the risk of ε4 on AD.


Assuntos
Doença de Alzheimer , Apolipoproteína E4/genética , Epigenômica , Heterozigoto , Microglia/metabolismo , Idoso , Alelos , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Encéfalo/patologia , Feminino , Predisposição Genética para Doença , Humanos , Masculino
10.
Artigo em Inglês | MEDLINE | ID: mdl-28935164

RESUMO

Molting is induced in decapod crustaceans via multiple leg autotomy (MLA) or eyestalk ablation (ESA). MLA removes five or more walking legs, which are regenerated and become functional appendages at ecdysis. ESA eliminates the primary source of molt-inhibiting hormone (MIH) and crustacean hyperglycemic hormone (CHH), which suppress the production of molting hormones (ecdysteroids) from the molting gland or Y-organ (YO). Both MLA and ESA are effective methods for molt induction in Gecarcinus lateralis. However, some G. lateralis individuals are refractory to MLA, as they fail to complete ecdysis by 12weeks post-MLA; these animals are in the "blocked" condition. Quantitative polymerase chain reaction was used to quantify mRNA levels of neuropeptide and mechanistic target of rapamycin (mTOR) signaling genes in YO, eyestalk ganglia (ESG), thoracic ganglion (TG), and brain of intact and blocked animals. Six of the seven neuropeptide signaling genes, three of four mTOR signaling genes, and Gl-elongation factor 2 (EF2) mRNA levels were significantly higher in the ESG of blocked animals. Gl-MIH and Gl-CHH mRNA levels were higher in the TG and brain of blocked animals and levels increased in both control and blocked animals in response to ESA. By contrast, mRNA levels of Gl-EF2 and five of the 10 MIH signaling pathway genes in the YO were two to four orders of magnitude higher in blocked animals compared to controls. These data suggest that increased MIH and CHH synthesis in the ESG contributes to the prevention of molt induction by MLA in blocked animals. The up-regulation of MIH signaling genes in the YO of blocked animals suggests that the YO is more sensitive to MIH produced in the ESG, as well as MIH produced in brain and TG of ESA animals. Both the up-regulation of MIH signaling genes in the YO and of Gl-MIH and Gl-CHH in the ESG, TG, and brain appear to contribute to some G. lateralis individuals being refractory to MLA and ESA.


Assuntos
Proteínas de Artrópodes/metabolismo , Braquiúros/fisiologia , Glândulas Exócrinas/inervação , Gânglios dos Invertebrados/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hormônios de Invertebrado/metabolismo , Modelos Neurológicos , Proteínas do Tecido Nervoso/metabolismo , Animais , Proteínas de Artrópodes/genética , Oceano Atlântico , Braquiúros/crescimento & desenvolvimento , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , República Dominicana , Ecdisteroides/biossíntese , Ecdisteroides/metabolismo , Glândulas Exócrinas/crescimento & desenvolvimento , Glândulas Exócrinas/metabolismo , Olho/crescimento & desenvolvimento , Olho/inervação , Olho/metabolismo , Gânglios dos Invertebrados/crescimento & desenvolvimento , Hormônios de Invertebrado/genética , Masculino , Muda , Proteínas do Tecido Nervoso/genética , Especificidade de Órgãos , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Cavidade Torácica/crescimento & desenvolvimento , Cavidade Torácica/inervação , Cavidade Torácica/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA