Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mycorrhiza ; 32(3-4): 353-360, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35641704

RESUMO

The members of the genus Tuber are Ascomycota that form ectomycorrhizal associations with various coniferous and broadleaf tree species. In the teleomorphic stage, the species of the genus produce fruit bodies known as true truffles. Recent studies have discovered mitosporic structures, including spore mats, of several Tuber species on forest soils, indicating the presence of a cryptic anamorphic stage or an unknown reproductive strategy. Here, we report in vitro mitospore formation on the mycelium of T. japonicum, which belongs to the Japonicum clade, collected in several regions in Japan. Twenty of the 25 strains formed mitospores on modified Melin-Norkrans agar medium, indicating that mitospore formation is likely a common trait among strains of T. japonicum. The fungus forms repeatedly branched conidiophores on aerial hyphae on colonies and generates holoblastic mitospores sympodially on the terminal and near apical parts and/or occasionally on the middle and basal parts of the conidiogenous cells. Mitospores are hyaline and elliptical, obovate, oblong, or occasionally bacilliform, with a vacuole and often distinct hilar appendices. Formation of mitospores by T. japonicum in vitro is useful in understanding the functions of mitospores in the genus Tuber under controlled environmental conditions.


Assuntos
Ascomicetos , Micorrizas , Ascomicetos/genética , DNA Fúngico , Filogenia
2.
Mycoscience ; 63(1): 39-44, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37091220

RESUMO

Seedlings of Pinus densiflora and Abies sachalinensis were inoculated with Tuber mycelial strains of the Puberulum clade in vitro to examine the morphological characteristics of their ectomycorrhizas. Axenically germinated seedlings were inoculated with the mycelia of five taxa from the Puberulum clade and grown in glass jars for 4 mo in an illuminated incubator. The seedlings were successfully colonized by the inoculated Tuber strains, as confirmed by the nuclear ribosomal internal transcribed spacer barcoding of the synthesized ectomycorrhizas. The ectomycorrhizas were characterized by a pale yellow to brown color, short needle-shaped cystidia, and net-like hyphal arrangement, and epidermoid cells on the mantle surface; notably, these features are similar to the ectomycorrhizas of various Puberulum clade members. As the ectomycorrhizas of different Tuber species are indistinguishable by morphological characters, molecular techniques are necessary to identify ectomycorrhizas formed by Tuber species within the Puberulum clade.

3.
Mycoscience ; 63(2): 53-57, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37092006

RESUMO

A white-colored truffle Tuber japonicum, indigenous to Japan, is an ascomycetous ectomycorrhizal fungus. To clarify the physiological characteristics of this fungus, we investigated the influence of culture medium, temperature, and sources of nitrogen (N) and carbon (C) on the growth of five strains. Tuber japonicum strains grew better on malt extract and modified Melin-Norkrans medium, and showed peak growth at 20 °C or 25 °C. This fungus utilized inorganic (NH4 + and NO3 -) and organic N sources (casamino acids, glutamine, peptone, urea, and yeast extract). Additionally, this fungus utilized various C sources, such as monosaccharide (arabinose, fructose, galactose, glucose, and mannose), disaccharide (maltose, sucrose, and trehalose), polysaccharide (dextrin and soluble starch), and sugar alcohol (mannitol). However, nutrient sources that promote growth and their effects on growth promotion widely varied among strains. This can result from the strain difference in enzyme activities involved in the assimilation and metabolism of these sources.

4.
Mycoscience ; 62(2): 124-131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37089255

RESUMO

Pure cultures of Tuber were isolated from ectomycorrhizal root tips in Abies sachalinensis plantations in Hokkaido, Japan. Their phylogenetic relationships as well as vegetative hyphal characteristics on culture media were reported. Phylogenetic analysis based on the internal transcribed spacer within ribosomal DNA settled well-supported eight lineages within Puberulum, Latisporum, and Maculatum clades in Tuber. Three and one lineages were grouped with undescribed species of Puberulum clade in Japan and that of the Latisporum group in China, respectively. Two lineages were closely associated to but distinct from an undescribed species of Puberulum clade in Japan. One lineage did not group with any sequences in the International Nucleotide Sequence Database (INSD), proposing a new taxon in the Latisporum group. One lineage was grouped with T. foetidum in Maculatum clade. All strains in each lineage displayed yellowish white, thin, filamentous colonies on Melin-Norkrans agar medium. Various differences in morphological characteristics of hyphae on pure cultures of various strains were noted, but they were frequently uncommon among strains of the same taxa. Isolation from ectomycorrhizal root tips can be among the effective ways to acquire pure cultures of Tuber strains.

5.
Mycorrhiza ; 28(7): 679-690, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30109472

RESUMO

Modern truffle cultivation systems started in Europe in the early 1970s and are now successfully used for several European truffles throughout the world. However, systems for indigenous novel truffle species need to be developed in several regions, especially where truffle cultivation has not been attempted so far, such as in Japan. Recently, two new and one known truffle species that are expected to be edible were reported from Japan: Tuber japonicum, T. longispinosum, and T. himalayense. Here, we conducted mycorrhization trials between these three truffle species and four native tree species in Japan (Quercus acutissima, Q. phillyraeoides, Q. serrata, and Pinus densiflora) using spore suspension and trap-plant seedling techniques under axenic pot culture conditions to understand their potential host ranges and mycorrhizal morphologies and to determine whether these inoculation methods are applicable for mycorrhization of Japanese truffles with native host plants. Of the 12 combinations, nine were successful for mycorrhization, including both oak and pine trees. The T. japonicum mycorrhiza was characterized by short, needle-shaped cystidia without septa, whereas the two black truffles, T. longispinosum and T. himalayense, were indistinguishable from each other because they shared the same morphological and anatomical characters such as brownish, long cystidia with right angle ramification. These features were similar to related black truffle species. The results of the present study indicate that the inoculation method used for European truffles can also be applied for mycorrhization between Japanese truffle species and compatible native pine and/or oak hosts in Japan.


Assuntos
Ascomicetos/fisiologia , Micorrizas/fisiologia , Pinus/microbiologia , Quercus/microbiologia , Microbiologia do Solo , Japão , Especificidade da Espécie
6.
Mycologia ; 110(3): 473-481, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29923792

RESUMO

Cenococcum geophilum forms sclerotia and ectomycorrhizas with host plants in forest soils. We demonstrated the differences in genetic diversity of C. geophilum between cultured isolates from sclerotia and those from ectomycorrhizal roots in the same 73 soil samples based on glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene sequences and newly developed microsatellite markers. Based on GAPDH sequences, 759 cultured isolates (553 from sclerotia and 206 from ectomycorrhizas) were classified into 107 "genotypes" with sequence variation of up to 8.6%. The total number of GAPDH genotypes per soil sample ranged from 1 to 9, but genotypes that were shared between sclerotia and ectomycorrhizas were uncommon (0-3 per soil sample). More than 50% of GAPDH genotypes were unique to one source in most soil samples. Unique GAPDH genotypes were detected from either scleotia or ectomycorrhizal roots in most of the soil samples. Multilocus analysis using nine microsatellite markers provided additional resolution to differentiate fungal individuals and supported the results of GAPDH genotyping. The results indicated that sampling both sclerotia and ectomycorrhizal roots maximizes the detection of diversity at the soil core scale. On the other hand, when all isolates were viewed together, 82 GAPDH genotypes were unique to sclerotia whereas only 6 GAPDH genotypes were unique to ectomycorrhizas. Rarefaction analysis indicated that GAPDH genotypic diversity is significantly higher in sclerotia than ectomycorrhizal roots and the diversity within sclerotia is nearly the same as that of both sclerotia and ectomycorrhizas together. These findings suggest that sampling sclerotia alone is likely to detect the majority of GAPDH genotypes in Cenococcum at the regional scale. When deciding whether to sample sclerotia, ectomycorrhizas, or both types of tissues from Cenococcum, it is critical to consider the spatial scale and also the main questions and hypotheses of the study.


Assuntos
Ascomicetos/genética , Variação Genética , Micorrizas/genética , Raízes de Plantas/microbiologia , DNA Fúngico/genética , Florestas , Proteínas Fúngicas/genética , Genótipo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Repetições de Microssatélites/genética , Microbiologia do Solo
7.
PLoS One ; 13(3): e0193745, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29590201

RESUMO

Black truffles that morphologically resemble Tuber indicum have been known to occur in Japan since 1979. Our previous studies showed that there are two phylotypes of these truffles, both of which fell into the T. indicum complex (hereinafter "Tuber sp. 6" and "Tuber sp. 7"). However, their taxonomic treatment is still unclear. In this study, we conducted morphological and phylogenetic analyses for a total of 52 specimens from Japan (16 Tuber sp. 6 and 13 Tuber sp. 7), China (10 T. himalayense and 8 T. indicum), and Taiwan (5 T. formosanum). We compared ascospore ornamentation, size, distribution of asci with average number of spores per ascus, spine size and shape of the Japanese specimens with their allied taxa. For phylogenetic analysis, we sequenced two mating loci (MAT1-1-1 and MAT1-2-1) and three commonly used loci (ITS, ß-tubulin, and TEF1-α). Three distinct lineages were recognized by phylogenetic analyses based on the sequences of the two mating-related loci and three independent loci. The Tuber sp. 6 sequences clustered with those of T. himalayense and T. formosanum, and there was no clear difference in morphology among them. Tuber sp. 7 formed a distinct lineage in each phylogram. The specimens tended to have five-spored asci more frequently than other allied species and could be characterized as having ascospore ornamentation with longer spines and narrower spine bases. We therefore described Tuber sp. 7 as a new species (T. longispinosum), and treat Tuber sp. 6 and T. formosanum as synonyms of T. himalayense.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Genes Fúngicos Tipo Acasalamento/genética , Loci Gênicos/genética , Filogenia , Análise de Sequência de DNA , Esporos Fúngicos/genética
8.
Mycorrhiza ; 26(8): 819-829, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27323714

RESUMO

Mycorrhizal symbiosis often displays low specificity, except for mycoheterotrophic plants that obtain carbon from their mycorrhizal fungi and often have higher specificity to certain fungal taxa. Partially mycoheterotrophic (or mixotrophic, MX) plant species tend to have a larger diversity of fungal partners, e.g., in the genus Pyrola (Monotropoideae, Ericaceae). Preliminary evidence however showed that the Japanese Pyrola japonica has preference for russulacean fungi based on direct sequencing of the fungal internal transcribed spacer (ITS) region from a single site. The present study challenges this conclusion using (1) sampling of P. japonica in different Japanese regions and forest types and (2) fungal identification by ITS cloning. Plants were sampled from eight sites in three regions, in one of which the fungal community on tree ectomycorrhizal (ECM) tips surrounding P. japonica was also analyzed. In all, 1512 clone sequences were obtained successfully from 35 P. japonica plants and 137 sequences from ECM communities. These sequences were collectively divided into 74 molecular operational taxonomic units (MOTUs) (51 and 33 MOTUs, respectively). MOTUs from P. japonica involved 36 ECM taxa (96 % of all clones), and 17 of these were Russula spp. (76.2 % of all clones), which colonized 33 of the 35 sampled plants. The MOTU composition significantly differed between P. japonica and ECM tips, although shared species represented 26.3 % of the ECM tips community in abundance. This suggests that P. japonica has a preference for russulacean fungi.


Assuntos
Basidiomycota/classificação , Micorrizas/classificação , Pyrola/microbiologia , Basidiomycota/fisiologia , Clonagem Molecular , Japão , Micorrizas/fisiologia , Filogenia
9.
Mycorrhiza ; 26(6): 529-40, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26968743

RESUMO

The fungus Cenococcum geophilum Fr. (Dothideomycetes, Ascomycota) is one of the most common ectomycorrhizal fungi in boreal to temperate regions. A series of molecular studies has demonstrated that C. geophilum is monophyletic but a heterogeneous species or a species complex. Here, we revisit the phylogenetic diversity of C. geophilum sensu lato from a regional to intercontinental scale by using new data from Florida (USA) along with existing data in GenBank from Japan, Europe, and North America. The combination of internal transcribed spacer (ITS) ribosomal DNA and the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene resolved six well-supported lineages (87-100 % bootstrap values) that are closely related to each other and a seventh lineage that is phylogenetically distinct. A multi-locus analysis (small subunit (SSU), large subunit (LSU), translational elongation factor (TEF), and the largest and second-largest subunits of RNA polymerase II (RPB1 and RPB2)) revealed that the divergent lineage is the sister group to all other known Cenococcum isolates. Isolates of the divergent lineage grow fast on nutrient media and do not form ectomycorrhizas on seedlings of several pine and oak species. Our results indicate that C. geophilum sensu lato includes more phylogenetically distinct cryptic species than have previously been reported. Furthermore, the divergent lineage appears to be a non-mycorrhizal sister group. We discuss the phylogenetic diversity of C. geophilum sensu lato and argue in favor of species recognition based on phylogenetic and ecological information in addition to morphological characteristics. A new genus and species (Pseudocenococcum floridanum gen. et sp. nov.) is proposed to accommodate a divergent and putatively non-mycorrhizal lineage.


Assuntos
Ascomicetos/classificação , Ascomicetos/genética , Filogenia , DNA Fúngico/genética , DNA Intergênico/genética , Variação Genética , Especificidade da Espécie
10.
Mycologia ; 108(1): 157-73, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26490700

RESUMO

Binderoboletus segoi gen. and sp. nov., Guyanaporus albipodus gen. and sp. nov. and Singerocomus rubriflavus gen. and sp. nov. (Boletaceae, Boletales, Basidiomycota) are described from the Pakaraima Mountains and adjacent lowlands of Guyana. Xerocomus inundabilis, originally described from the central Brazilian Amazon and based solely on the type collection, is redescribed from numerous collections from Guyana and transferred into Singerocomus. These boletes occur in Neotropical forests dominated by ectomycorrhizal trees in the genera Dicymbe (Fabaceae subfam. Caesalpinioideae), Aldina (Fabaceae subfam. Papilionoideae) and Pakaraimaea (Dipterocarpaceae). Three of the species were repeatedly found in a multiyear sporocarp survey in Dicymbe corymbosa-monodominant forest. Macromorphological, micromorphological, habitat and multilocus DNA sequence data are provided for each species. A molecular phylogenetic analysis based on a large taxon set across the Boletaceae justifies erection of the new genera.


Assuntos
Basidiomycota/classificação , Dipterocarpaceae/microbiologia , Fabaceae/microbiologia , Micorrizas/classificação , Sequência de Bases , Basidiomycota/citologia , Basidiomycota/genética , DNA Fúngico/química , DNA Fúngico/genética , Florestas , Carpóforos , Guiana , Dados de Sequência Molecular , Micorrizas/citologia , Micorrizas/genética , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie , Esporos Fúngicos , Árvores/microbiologia
11.
FEMS Microbiol Ecol ; 91(10)2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26347080

RESUMO

The asexual ectomycorrhizal fungus Cenococcum geophilum has a wide geographic range in diverse forest ecosystems. Although its genetic diversity has been documented at a stand or regional scale, knowledge of spatial genetic structure is limited. We studied the genetic diversity and spatial structure of C. geophilum in eight Japanese coastal pine forests with a maximum geographic range of 1364 km. A total of 225 samples were subjected to phylogenetic analysis based on the glyceraldehyde 3-phosphate dehydrogenase gene (GAPDH) followed by microsatellite analysis with five loci. The phylogenetic analysis based on GAPDH resolved three groups with most isolates falling into one dominant lineage. Microsatellite analyses generated 104 multilocus genotypes in the overall populations. We detected significant genetic variation within populations and genetic clusters indicating that high genetic diversity may be maintained by possible recombination processes at a stand scale. Although no spatial autocorrelation was detected at a stand scale, the relationship between genetic and geographic distances among the populations was significant, suggesting a pattern of isolation by distance. These results indicate that cryptic recombination events at a local scale and unknown migration events at both stand and regional scales influence spatial distribution and genetic structure of C. geophilum in coastal pine forests of Japan.


Assuntos
Ascomicetos/genética , DNA Fúngico/genética , Florestas , Gliceraldeído 3-Fosfato Desidrogenase (NADP+)/genética , Repetições de Microssatélites/genética , Pinus/microbiologia , Ascomicetos/isolamento & purificação , Estruturas Genéticas , Variação Genética/genética , Genótipo , Japão , Micorrizas/genética , Filogenia
12.
IMA Fungus ; 6(2): 297-317, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26732137

RESUMO

Jimtrappea guyanensis gen. sp. nov., Castellanea pakaraimophila gen. sp. nov., and Costatisporus cyanescens gen. sp. nov. are described as new to science. These sequestrate, hypogeous fungi were collected in Guyana under closed canopy tropical forests in association with ectomycorrhizal (ECM) host tree genera Dicymbe (Fabaceae subfam. Caesalpinioideae), Aldina (Fabaceae subfam. Papilionoideae), and Pakaraimaea (Dipterocarpaceae). Molecular data place these fungi in Boletaceae (Boletales, Agaricomycetes, Basidiomycota) and inform their relationships to other known epigeous and sequestrate taxa within that family. Macro- and micromorphological characters, habitat, and multi-locus DNA sequence data are provided for each new taxon. Unique morphological features and a molecular phylogenetic analysis of 185 taxa across the order Boletales justify the recognition of the three new genera.

13.
FEMS Microbiol Ecol ; 90(3): 708-17, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25229424

RESUMO

The ectomycorrhizal fungus Cenococcum geophilum (Ascomycota, Dothideomycetes) forms black, round to irregular sclerotia in forest soils. Fungi that colonize the sclerotia appear to affect sclerotia viability and may play an important role in the life history of Cenococcum. Some of the fungi could also affect nutrient cycling by decomposing Cenococcum sclerotia, which are melanized and recalcitrant to decay. We used a culture-based method to document the fungal communities growing inside surface-sterilized sclerotia that were collected from forest soils. Cenococcum was successfully isolated from 297 of 971 sclerotia whereas 427 sclerotia hosted fungi other than Cenococcum. DNA barcoding of the internal transcribed spacer rDNA followed by grouping at 97% sequence similarity yielded 85 operational taxonomic units (OTUs) that consisted primarily of Ascomycota (e.g. Chaetothyriales, Eurotiales, Helotiales, Pleosporales) and a few Basidiomycota and Mucoromycotina. Although most fungal OTUs were infrequently cultured, several OTUs such as members of Asterostroma, Cladophialophora, Oidiodendron, and Pleosporales were common and found across many sites. Our results suggest that Cenococcum sclerotia act as a substrate for diverse fungi. The occurrence of several OTUs in sclerotia across many sites suggests that these fungi may be active parasites of Cenococcum sclerotia or may preferentially use sclerotia as a nutrient source.


Assuntos
Ascomicetos/classificação , Florestas , Micorrizas , Microbiologia do Solo , Árvores/microbiologia , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Basidiomycota/classificação , Basidiomycota/genética , Basidiomycota/isolamento & purificação , Biodiversidade , DNA Espaçador Ribossômico/genética , Análise de Sequência de DNA
14.
Mycorrhiza ; 24(8): 635-44, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24795166

RESUMO

Roots of plants in the genus Enkianthus, which belongs to the earliest diverging lineage in the Ericaceae, are commonly colonized by arbuscular mycorrhizal (AM) fungi. We documented the community of fungal root endophytes associated with Enkianthus species using a culture-based method for better understanding the members of root-colonizing fungi, except for AM fungi. Fungal isolates were successfully obtained from 610 out of 3,599 (16.9 %) root segments. Molecular analysis of fungal cultures based on ribosomal internal transcribed spacer (ITS) sequences yielded 63 operational taxonomical units (OTUs: 97 % sequence similarity cutoff) from 315 representative isolates. Further phylogenetic analysis showed that most (296 isolates) belonged to Ascomycota and were either members of Helotiales (Dermataceae, Hyaloscyphaceae, Phialocephala and Rhizoscyphus ericae aggregate), Oidiodendron, or other Pezizomycotina. Twenty-three out of 63 OTUs, which mainly consisted of Leotiomycetes, showed high similarities with reference sequences derived from roots of other ericaceous plants such as Rhododendron. The results indicated that Enkianthus houses variable root mycobionts including putative endophytic and mycorrhizal fungi in addition to AM fungi.


Assuntos
Ericaceae/microbiologia , Fungos/isolamento & purificação , Raízes de Plantas/microbiologia , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Fungos/genética , Fungos/fisiologia , Filogenia
15.
Mycorrhiza ; 23(3): 199-208, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23053576

RESUMO

Enkianthus is the most basal extant genus in the phylogeny of ericaceous plants. Its members harbor arbuscular mycorrhiza (AM)-like hyphal structures in their roots but, as yet, no study has surveyed the AM fungal species component. Roots from six species of Enkianthus were collected from five distantly located sites in Japan. Intracellular hyphal coils were observed in the root cortical cells of all species. Fungal DNA sequences of the small subunit ribosomal RNA gene were obtained from 73 of 75 segments of Enkianthus campanulatus roots by PCR using either AML2 or NS31/AM1primer pairs. Results indicated that all E. campanulatus trees were extensively associated with Glomus spp. A phylogenetic analysis showed that 71 root segments harbored fungi belonging to Glomus group A. Among eight delineated clades, seven did not nest with any known AM fungal species. One clade was detected in all roots at all sites at relatively high frequencies, but the rest were detected sporadically at each site. The placement of sequences from distantly located sites into a single clade without known AM fungal species suggests the common association of E. campanulatus with particular AM fungal taxa.


Assuntos
Ericaceae/microbiologia , Micorrizas/fisiologia , Evolução Biológica , Hifas , Japão , Micorrizas/genética , Filogenia , Raízes de Plantas/microbiologia , Simbiose
16.
Mycobiology ; 39(2): 125-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22783090

RESUMO

Enzyme activities of Cenococcum geophilum isolates were examined on enzyme-specific solid media. Deoxyribonuclease, phosphatase, and urease were detected in all isolates, whereas cellulase was not detected in any of the isolates. Variations in enzyme activities of amylase, caseinolysis, gelatinase, lipase, and ribonuclease were observed among isolates.

17.
Mycobiology ; 39(2): 133-6, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22783092

RESUMO

Mycelial growth and survival ratio of ectomycorrhizal fungi were determined after storage at -70℃ for 1, 3, or 6 mon. Seventeen of 23 ectomycorrhizal fungi did not survive after storage for more than 6 mon, whereas Cenococcum geophilum, Lepista nuda, and some species of Rhizopogon and Suillus did survive.

18.
Mycobiology ; 38(3): 225-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23956661

RESUMO

We studied the resistance of Cenococcum geophilum and Suillus granulatus isolates to NaCl during growth under axenic culture conditions. C. geophilum isolates displayed variations in NaCl resistance; mycelial growth of most isolates was inhibited above 200mM. All isolates of S. granulatus were tolerant to high NaCl content.

19.
Mycorrhiza ; 20(1): 39-49, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19557441

RESUMO

We investigated the ectomycorrhizal (ECM) fungal colonization status of Pinus thunbergii mature trees and regenerating seedlings varying in age in coastal pine forests on the east coast of Korea. We established one 20 x 20-m plot at each of two study sites at P. thunbergii coastal forests in Samcheok. Fifty soil blocks (5 x 5 x 15 cm) were sampled at regular intervals, and ten P. thunbergii seedlings of age 0, 1-3, 3-5, and 5-10 years were sampled in each study plot. In total of 27 ECM fungal taxa, Cenococcum geophilum was dominant, followed by Russula sp., Sebacina sp., and unidentified Cortinuris sp. in mature trees. In 0-year-old seedlings, some fungal species such as Sebacina sp., C. geophilum, and unidentified Cortinarius sp. were dominant whereas only C. geophilum was dominant after 1 year, and there were no apparent succession patterns in ECM fungal compositions beyond a host age of 1 year. Most ECM fungal taxa that had colonized seedlings of each age class were also observed in roots of mature trees in each site. These taxa accounted for 86.7-100% and 96.4-98.4% of ECM abundance in seedlings and mature trees, respectively. The results indicate that the species composition of ECM fungal taxa colonizing seedlings of different age in forests is similar to that of surrounding mature trees. Our results also showed that C. geophilum is a common and dominant ECM fungus in P. thunbergii coastal forests and might play a significant role in their regeneration.


Assuntos
Ascomicetos/crescimento & desenvolvimento , Basidiomycota/crescimento & desenvolvimento , Ecossistema , Micorrizas/crescimento & desenvolvimento , Pinus/microbiologia , Ascomicetos/classificação , Ascomicetos/genética , Basidiomycota/classificação , Basidiomycota/genética , DNA Fúngico/análise , DNA Fúngico/isolamento & purificação , Coreia (Geográfico) , Micorrizas/classificação , Micorrizas/genética , Pinus/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Plântula/crescimento & desenvolvimento , Plântula/microbiologia , Árvores/crescimento & desenvolvimento , Árvores/microbiologia
20.
Mycorrhiza ; 17(3): 209-215, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17216274

RESUMO

We investigated the association between ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) fungi and pioneer woody plant species in areas devastated by the eruption of Mt. Usu, Japan, in 2000. We observed eight woody plant species at the research site, most of which were associated with ECM and/or AM fungi. In particular, dominant woody plant species Populus maximowiczii, Salix hultenii var. angustifolia and Salix sachalinensis were consistently associated with ECM fungi and erratically associated with AM fungi. We found one to six morphotypes in the roots of each ECM host and, on average, two in the roots of each seedling, indicating low ECM fungal diversity. ECM colonization ranged from 17 to 42% of root tips. Using morphotyping and molecular analyses, 15 ECM fungi were identified. ECM fungi differed greatly between hosts. However, Laccaria amethystea, Hebeloma mesophaeum, Thelephora terrestris and other Thelephoraceae had high relative colonization, constituting the majority of the ECM colonization in the roots of each plant species. These ECM fungi may be important for the establishment of pioneer woody plant species and further revegetation at Mt. Usu volcano.


Assuntos
Micorrizas/isolamento & purificação , Plantas/microbiologia , DNA Fúngico/genética , DNA Fúngico/isolamento & purificação , Ecossistema , Japão , Micorrizas/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Populus/microbiologia , Salix/microbiologia , Erupções Vulcânicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA