Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(12): e2309326121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38483986

RESUMO

Hsp90s are ATP-dependent chaperones that collaborate with co-chaperones and Hsp70s to remodel client proteins. Grp94 is the ER Hsp90 homolog essential for folding multiple secretory and membrane proteins. Grp94 interacts with the ER Hsp70, BiP, although the collaboration of the ER chaperones in protein remodeling is not well understood. Grp94 undergoes large-scale conformational changes that are coupled to chaperone activity. Within Grp94, a region called the pre-N domain suppresses ATP hydrolysis and conformational transitions to the active chaperone conformation. In this work, we combined in vivo and in vitro functional assays and structural studies to characterize the chaperone mechanism of Grp94. We show that Grp94 directly collaborates with the BiP chaperone system to fold clients. Grp94's pre-N domain is not necessary for Grp94-client interactions. The folding of some Grp94 clients does not require direct interactions between Grp94 and BiP in vivo, suggesting that the canonical collaboration may not be a general chaperone mechanism for Grp94. The BiP co-chaperone DnaJB11 promotes the interaction between Grp94 and BiP, relieving the pre-N domain suppression of Grp94's ATP hydrolysis activity. In structural studies, we find that ATP binding by Grp94 alters the ATP lid conformation, while BiP binding stabilizes a partially closed Grp94 intermediate. Together, BiP and ATP push Grp94 into the active closed conformation for client folding. We also find that nucleotide binding reduces Grp94's affinity for clients, which is important for productive client folding. Alteration of client affinity by nucleotide binding may be a conserved chaperone mechanism for a subset of ER chaperones.


Assuntos
Proteínas de Choque Térmico HSP70 , Dobramento de Proteína , Humanos , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Nucleotídeos , Trifosfato de Adenosina/metabolismo
2.
Membranes (Basel) ; 14(2)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38392672

RESUMO

KCNE3 is a single-pass integral membrane protein that regulates numerous voltage-gated potassium channel functions such as KCNQ1. Previous solution NMR studies suggested a moderate degree of curved α-helical structure in the transmembrane domain (TMD) of KCNE3 in lyso-myristoylphosphatidylcholine (LMPC) micelles and isotropic bicelles with the residues T71, S74 and G78 situated along the concave face of the curved helix. During the interaction of KCNE3 and KCNQ1, KCNE3 pushes its transmembrane domain against KCNQ1 to lock the voltage sensor in its depolarized conformation. A cryo-EM study of KCNE3 complexed with KCNQ1 in nanodiscs suggested a deviation of the KCNE3 structure from its independent structure in isotropic bicelles. Despite the biological significance of KCNE3 TMD, the conformational properties of KCNE3 are poorly understood. Here, all atom molecular dynamics (MD) simulations were utilized to investigate the conformational dynamics of the transmembrane domain of KCNE3 in a lipid bilayer containing a mixture of POPC and POPG lipids (3:1). Further, the effect of the interaction impairing mutations (V72A, I76A and F68A) on the conformational properties of the KCNE3 TMD in lipid bilayers was investigated. Our MD simulation results suggest that the KCNE3 TMD adopts a nearly linear α helical structural conformation in POPC-POPG lipid bilayers. Additionally, the results showed no significant change in the nearly linear α-helical conformation of KCNE3 TMD in the presence of interaction impairing mutations within the sampled time frame. The KCNE3 TMD is more stable with lower flexibility in comparison to the N-terminal and C-terminal of KCNE3 in lipid bilayers. The overall conformational flexibility of KCNE3 also varies in the presence of the interaction-impairing mutations. The MD simulation data further suggest that the membrane bilayer width is similar for wild-type KCNE3 and KCNE3 containing mutations. The Z-distance measurement data revealed that the TMD residue site A69 is close to the lipid bilayer center, and residue sites S57 and S82 are close to the surfaces of the lipid bilayer membrane for wild-type KCNE3 and KCNE3 containing interaction-impairing mutations. These results agree with earlier KCNE3 biophysical studies. The results of these MD simulations will provide complementary data to the experimental outcomes of KCNE3 to help understand its conformational dynamic properties in a more native lipid bilayer environment.

3.
J Phys Chem B ; 127(24): 5389-5409, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37294929

RESUMO

Grp94, an ER-localized molecular chaperone, is required for the folding and activation of many membrane and secretory proteins. Client activation by Grp94 is mediated by nucleotide and conformational changes. In this work, we aim to understand how microscopic changes from nucleotide hydrolysis can potentiate large-scale conformational changes of Grp94. We performed all-atom molecular dynamics simulations on the ATP-hydrolysis competent state of the Grp94 dimer in four different nucleotide bound states. We found that Grp94 was the most rigid when ATP was bound. ATP hydrolysis or nucleotide removal enhanced mobility of the N-terminal domain and ATP lid, resulting in suppression of interdomain communication. In an asymmetric conformation with one hydrolyzed nucleotide, we identified a more compact state, similar to experimental observations. We also identified a potential regulatory role of the flexible linker, as it formed electrostatic interactions with the Grp94 M-domain helix near the region where BiP is known to bind. These studies were complemented with normal-mode analysis of an elastic network model to investigate Grp94's large-scale conformational changes. SPM analysis identified residues that are important in signaling conformational change, many of which have known functional relevance in ATP coordination and catalysis, client binding, and BiP binding. Our findings suggest that ATP hydrolysis in Grp94 alters allosteric wiring and facilitates conformational changes.


Assuntos
Proteínas de Choque Térmico HSP90 , Nucleotídeos , Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP90/química , Chaperonas Moleculares/metabolismo , Simulação de Dinâmica Molecular , Nucleotídeos/metabolismo , Ligação Proteica , Conformação Proteica
4.
J Mol Biol ; 435(17): 168184, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37348754

RESUMO

Hsp90 and Hsp70 are highly conserved molecular chaperones that help maintain proteostasis by participating in protein folding, unfolding, remodeling and activation of proteins. Both chaperones are also important for cellular recovery following environmental stresses. Hsp90 and Hsp70 function collaboratively for the remodeling and activation of some client proteins. Previous studies using E. coli and S. cerevisiae showed that residues in the Hsp90 middle domain directly interact with a region in the Hsp70 nucleotide binding domain, in the same region known to bind J-domain proteins. Importantly, J-domain proteins facilitate and stabilize the interaction between Hsp90 and Hsp70 both in E. coli and S. cerevisiae. To further explore the role of J-domain proteins in protein reactivation, we tested the hypothesis that J-domain proteins participate in the collaboration between Hsp90 and Hsp70 by simultaneously interacting with Hsp90 and Hsp70. Using E. coli Hsp90, Hsp70 (DnaK), and a J-domain protein (CbpA), we detected a ternary complex containing all three proteins. The interaction involved the J-domain of CbpA, the DnaK binding region of E. coli Hsp90, and the J-domain protein binding region of DnaK where Hsp90 also binds. Additionally, results show that E. coli Hsp90 interacts with E. coli J-domain proteins, DnaJ and CbpA, and that yeast Hsp90, Hsp82, interacts with a yeast J-domain protein, Ydj1. Together these results suggest that the complexes may be transient intermediates in the pathway of collaborative protein remodeling by Hsp90 and Hsp70.


Assuntos
Proteínas de Escherichia coli , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico HSP90 , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Domínios Proteicos
5.
J Biomol Struct Dyn ; 40(7): 3060-3070, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33170088

RESUMO

Ubiquitin-specific protease 14 (USP14) is a member of the deubiquitinating enzymes (DUBs) involved in disrupting the ubiquitin-proteasome regulation system, responsible for the degradation of impaired and misfolded proteins, which is an essential mechanism in eukaryotic cells. The involvement of USP14 in cancer progression and neurodegenerative disorders has been reported. Thereof USP14 is a prime therapeutic target; hence, designing efficacious inhibitors against USP14 is central in curbing these conditions. Herein, we relied on structural bioinformatics methods incorporating molecular docking, molecular mechanics generalized born surface area (MM-GBSA), molecular dynamics simulation (MD simulation), and ADME to identify potential allosteric USP14 inhibitors. A library of over 733 compounds from the PubChem repository with >90% match to the IU1 chemical structure was screened in a multi-step framework to attain prospective drug-like inhibitors. Two potential lead compounds (CID 43013232 and CID 112370349) were shown to record better binding affinity compared to IU1, but with subtle difference to IU1-47, a 10-fold potent compound when compared to IU1. The stability of the lead molecules complexed with USP14 was studied via MD simulation. The molecules were found to be stable within the binding site throughout the 50 ns simulation time. Moreover, the protein-ligand interactions across the simulation run time suggest Phe331, Tyr476, and Gln197 as crucial residues for USP14 inhibition. Furthermore, in-silico pharmacological evaluation revealed the lead compounds as pharmacological sound molecules. Overall, the methods deployed in this study revealed two novel candidates that may show selective inhibitory activity against USP14, which could be exploited to produce potent and harmless USP14 inhibitors.Communicated by Ramaswamy H. Sarma.


Assuntos
Complexo de Endopeptidases do Proteassoma , Polegar , Citoplasma/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA