Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Front Neuroinform ; 18: 1338886, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38375447

RESUMO

Study objectives: We aimed to build a tool which facilitates manual labeling of sleep slow oscillations (SOs) and evaluate the performance of traditional sleep SO detection algorithms on such a manually labeled data set. We sought to develop improved methods for SO detection. Method: SOs in polysomnographic recordings acquired during nap time from ten older adults were manually labeled using a custom built graphical user interface tool. Three automatic SO detection algorithms previously used in the literature were evaluated on this data set. Additional machine learning and deep learning algorithms were trained on the manually labeled data set. Results: Our custom built tool significantly decreased the time needed for manual labeling, allowing us to manually inspect 96,277 potential SO events. The three automatic SO detection algorithms showed relatively low accuracy (max. 61.08%), but results were qualitatively similar, with SO density and amplitude increasing with sleep depth. The machine learning and deep learning algorithms showed higher accuracy (best: 99.20%) while maintaining a low prediction time. Conclusions: Accurate detection of SO events is important for investigating their role in memory consolidation. In this context, our tool and proposed methods can provide significant help in identifying these events.

2.
Front Psychiatry ; 15: 1352641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38414495

RESUMO

Introduction: We examined changes in large-scale functional connectivity and temporal dynamics and their underlying mechanisms in schizophrenia (ScZ) through measurements of resting-state functional magnetic resonance imaging (rs-fMRI) data and computational modelling. Methods: The rs-fMRI measurements from patients with chronic ScZ (n=38) and matched healthy controls (n=43), were obtained through the public schizConnect repository. Computational models were constructed based on diffusion-weighted MRI scans and fit to the experimental rs-fMRI data. Results: We found decreased large-scale functional connectivity across sensory and association areas and for all functional subnetworks for the ScZ group. Additionally global synchrony was reduced in patients while metastability was unaltered. Perturbations of the computational model revealed that decreased global coupling and increased background noise levels both explained the experimentally found deficits better than local changes to the GABAergic or glutamatergic system. Discussion: The current study suggests that large-scale alterations in ScZ are more likely the result of global rather than local network changes.

3.
PLoS Comput Biol ; 19(10): e1011512, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37883331

RESUMO

The complexity of natural scenes makes it challenging to experimentally study the mechanisms behind human gaze behavior when viewing dynamic environments. Historically, eye movements were believed to be driven primarily by space-based attention towards locations with salient features. Increasing evidence suggests, however, that visual attention does not select locations with high saliency but operates on attentional units given by the objects in the scene. We present a new computational framework to investigate the importance of objects for attentional guidance. This framework is designed to simulate realistic scanpaths for dynamic real-world scenes, including saccade timing and smooth pursuit behavior. Individual model components are based on psychophysically uncovered mechanisms of visual attention and saccadic decision-making. All mechanisms are implemented in a modular fashion with a small number of well-interpretable parameters. To systematically analyze the importance of objects in guiding gaze behavior, we implemented five different models within this framework: two purely spatial models, where one is based on low-level saliency and one on high-level saliency, two object-based models, with one incorporating low-level saliency for each object and the other one not using any saliency information, and a mixed model with object-based attention and selection but space-based inhibition of return. We optimized each model's parameters to reproduce the saccade amplitude and fixation duration distributions of human scanpaths using evolutionary algorithms. We compared model performance with respect to spatial and temporal fixation behavior, including the proportion of fixations exploring the background, as well as detecting, inspecting, and returning to objects. A model with object-based attention and inhibition, which uses saliency information to prioritize between objects for saccadic selection, leads to scanpath statistics with the highest similarity to the human data. This demonstrates that scanpath models benefit from object-based attention and selection, suggesting that object-level attentional units play an important role in guiding attentional processing.


Assuntos
Movimentos Oculares , Fixação Ocular , Humanos , Estimulação Luminosa/métodos , Movimentos Sacádicos , Acompanhamento Ocular Uniforme , Percepção Visual/fisiologia
4.
J Cogn Neurosci ; 35(11): 1879-1897, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37590093

RESUMO

Humans effortlessly make quick and accurate perceptual decisions about the nature of their immediate visual environment, such as the category of the scene they face. Previous research has revealed a rich set of cortical representations potentially underlying this feat. However, it remains unknown which of these representations are suitably formatted for decision-making. Here, we approached this question empirically and computationally, using neuroimaging and computational modeling. For the empirical part, we collected EEG data and RTs from human participants during a scene categorization task (natural vs. man-made). We then related EEG data to behavior to behavior using a multivariate extension of signal detection theory. We observed a correlation between neural data and behavior specifically between ∼100 msec and ∼200 msec after stimulus onset, suggesting that the neural scene representations in this time period are suitably formatted for decision-making. For the computational part, we evaluated a recurrent convolutional neural network (RCNN) as a model of brain and behavior. Unifying our previous observations in an image-computable model, the RCNN predicted well the neural representations, the behavioral scene categorization data, as well as the relationship between them. Our results identify and computationally characterize the neural and behavioral correlates of scene categorization in humans.


Assuntos
Encéfalo , Reconhecimento Visual de Modelos , Humanos , Estimulação Luminosa/métodos , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico/métodos
5.
J Sleep Res ; 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488062

RESUMO

Certain neurophysiological characteristics of sleep, in particular slow oscillations (SOs), sleep spindles, and their temporal coupling, have been well characterised and associated with human memory abilities. Delta waves, which are somewhat higher in frequency and lower in amplitude compared to SOs, and their interaction with spindles have only recently been found to play a critical role in memory processing of rodents, through a competitive interaction between SO-spindle and delta-spindle coupling. However, human studies that comprehensively address delta wave interactions with spindles and SOs, as well as their functional role for memory are still lacking. Electroencephalographic data were acquired across three naps of 33 healthy older human participants (17 female) to investigate delta-spindle coupling and the interplay between delta- and SO-related activity. Additionally, we determined intra-individual stability of coupling measures and their potential link to the ability to form novel memories in a verbal memory task. Our results revealed weaker delta-spindle compared to SO-spindle coupling. Contrary to our initial hypothesis, we found no evidence for an opposing dependency between SO- and delta-related activities during non-rapid eye movement sleep. Moreover, the ratio between SO- and delta-nested spindles rather than SO-spindle and delta-spindle coupling measures by themselves predicted the ability to form novel memories best. In conclusion, our results do not confirm previous findings in rodents on competitive interactions between delta activity and SO-spindle coupling in older adults. However, they support the hypothesis that SO, delta wave, and spindle activity should be jointly considered when aiming to link sleep physiology and memory formation.

6.
Chaos ; 33(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37097962

RESUMO

Nonlinear dynamical systems describe neural activity at various scales and are frequently used to study brain functions and the impact of external perturbations. Here, we explore methods from optimal control theory (OCT) to study efficient, stimulating "control" signals designed to make the neural activity match desired targets. Efficiency is quantified by a cost functional, which trades control strength against closeness to the target activity. Pontryagin's principle then enables to compute the cost-minimizing control signal. We then apply OCT to a Wilson-Cowan model of coupled excitatory and inhibitory neural populations. The model exhibits an oscillatory regime, low- and high-activity fixed points, and a bistable regime where low- and high-activity states coexist. We compute an optimal control for a state-switching (bistable regime) and a phase-shifting task (oscillatory regime) and allow for a finite transition period before penalizing the deviation from the target state. For the state-switching task, pulses of limited input strength push the activity minimally into the target basin of attraction. Pulse shapes do not change qualitatively when varying the duration of the transition period. For the phase-shifting task, periodic control signals cover the whole transition period. Amplitudes decrease when transition periods are extended, and their shapes are related to the phase sensitivity profile of the model to pulsed perturbations. Penalizing control strength via the integrated 1-norm yields control inputs targeting only one population for both tasks. Whether control inputs drive the excitatory or inhibitory population depends on the state-space location.


Assuntos
Modelos Neurológicos , Dinâmica não Linear
7.
J Neural Eng ; 20(1)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36577144

RESUMO

Objective. Feedback training is a practical approach to brain-computer interface (BCI) end-users learning to modulate their sensorimotor rhythms (SMRs). BCI self-regulation learning has been shown to be influenced by subjective psychological factors, such as motivation. However, few studies have taken into account the users' self-motivation as additional guidance for the cognitive process involved in BCI learning. In this study we tested a transfer learning (TL) feedback method designed to increase self-motivation by providing information about past performance.Approach. Electroencephalography (EEG) signals from the previous runs were affine transformed and displayed as points on the screen, along with the newly recorded EEG signals in the current run, giving the subjects a context for self-motivation. Subjects were asked to separate the feedback points for the current run under the display of the separability of prior training. We conducted a between-subject feedback training experiment, in which 24 healthy SMR-BCI naive subjects were trained to imagine left- and right-hand movements. The participants were provided with either TL feedback or typical cursor-bar (CB) feedback (control condition), for three sessions on separate days.Main results. The behavioral results showed an increased challenge and stable mastery confidence, suggesting that subjects' motivation grew as the feedback training went on. The EEG results showed favorable overall training effects with TL feedback in terms of the class distinctiveness and EEG discriminancy. Performance was 28.5% higher in the third session than in the first. About 41.7% of the subjects were 'learners' including not only low-performance subjects, but also good-performance subjects who might be affected by the ceiling effect. Subjects were able to control BCI with TL feedback with a higher performance of 60.5% during the last session compared to CB feedback.Significance. The present study demonstrated that the proposed TL feedback method boosted psychological engagement through the self-motivated context, and further allowed subjects to modulate SMR effectively. The proposed TL feedback method also provided an alternative to typical CB feedback.


Assuntos
Interfaces Cérebro-Computador , Humanos , Retroalimentação , Aprendizagem/fisiologia , Eletroencefalografia/métodos , Aprendizado de Máquina
8.
Neuromodulation ; 26(8): 1592-1601, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35981956

RESUMO

BACKGROUND: Oscillatory rhythms during sleep, such as slow oscillations (SOs) and spindles and, most importantly, their coupling, are thought to underlie processes of memory consolidation. External slow oscillatory transcranial direct current stimulation (so-tDCS) with a frequency of 0.75 Hz has been shown to improve this coupling and memory consolidation; however, effects varied quite markedly between individuals, studies, and species. In this study, we aimed to determine how precisely the frequency of stimulation must match the naturally occurring SO frequency in individuals to best improve SO-spindle coupling. Moreover, we systematically tested stimulation durations necessary to induce changes. MATERIALS AND METHODS: We addressed these questions by comparing so-tDCS with individualized frequency to standardized frequency of 0.75 Hz in a within-subject design with 28 older participants during napping while stimulation train durations were systematically varied between 30 seconds, 2 minutes, and 5 minutes. RESULTS: Stimulation trains as short as 30 seconds were sufficient to modulate the coupling between SOs and spindle activity. Contrary to our expectations, so-tDCS with standardized frequency indicated stronger aftereffects regarding SO-spindle coupling than individualized frequency. Angle and variance of spindle maxima occurrence during the SO cycle were similarly modulated. CONCLUSIONS: In sum, short stimulation trains were sufficient to induce significant changes in sleep physiology, allowing for more trains of stimulation, which provides methodological advantages and possibly even larger behavioral effects in future studies. Regarding individualized stimulation frequency, further options of optimization need to be investigated, such as closed-loop stimulation, to calibrate stimulation frequency to the SO frequency at the time of stimulation onset. CLINICAL TRIAL REGISTRATION: The Clinicaltrials.gov registration number for the study is NCT04714879.


Assuntos
Consolidação da Memória , Estimulação Transcraniana por Corrente Contínua , Humanos , Sono/fisiologia , Consolidação da Memória/fisiologia , Eletroencefalografia
9.
Front Neuroinform ; 16: 883700, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387586

RESUMO

Graphics processing units (GPUs) are widely available and have been used with great success to accelerate scientific computing in the last decade. These advances, however, are often not available to researchers interested in simulating spiking neural networks, but lacking the technical knowledge to write the necessary low-level code. Writing low-level code is not necessary when using the popular Brian simulator, which provides a framework to generate efficient CPU code from high-level model definitions in Python. Here, we present Brian2CUDA, an open-source software that extends the Brian simulator with a GPU backend. Our implementation generates efficient code for the numerical integration of neuronal states and for the propagation of synaptic events on GPUs, making use of their massively parallel arithmetic capabilities. We benchmark the performance improvements of our software for several model types and find that it can accelerate simulations by up to three orders of magnitude compared to Brian's CPU backend. Currently, Brian2CUDA is the only package that supports Brian's full feature set on GPUs, including arbitrary neuron and synapse models, plasticity rules, and heterogeneous delays. When comparing its performance with Brian2GeNN, another GPU-based backend for the Brian simulator with fewer features, we find that Brian2CUDA gives comparable speedups, while being typically slower for small and faster for large networks. By combining the flexibility of the Brian simulator with the simulation speed of GPUs, Brian2CUDA enables researchers to efficiently simulate spiking neural networks with minimal effort and thereby makes the advancements of GPU computing available to a larger audience of neuroscientists.

10.
Front Comput Neurosci ; 16: 931121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35990368

RESUMO

We apply the framework of nonlinear optimal control to a biophysically realistic neural mass model, which consists of two mutually coupled populations of deterministic excitatory and inhibitory neurons. External control signals are realized by time-dependent inputs to both populations. Optimality is defined by two alternative cost functions that trade the deviation of the controlled variable from its target value against the "strength" of the control, which is quantified by the integrated 1- and 2-norms of the control signal. We focus on a bistable region in state space where one low- ("down state") and one high-activity ("up state") stable fixed points coexist. With methods of nonlinear optimal control, we search for the most cost-efficient control function to switch between both activity states. For a broad range of parameters, we find that cost-efficient control strategies consist of a pulse of finite duration to push the state variables only minimally into the basin of attraction of the target state. This strategy only breaks down once we impose time constraints that force the system to switch on a time scale comparable to the duration of the control pulse. Penalizing control strength via the integrated 1-norm (2-norm) yields control inputs targeting one or both populations. However, whether control inputs to the excitatory or the inhibitory population dominate, depends on the location in state space relative to the bifurcation lines. Our study highlights the applicability of nonlinear optimal control to understand neuronal processing under constraints better.

11.
Front Comput Neurosci ; 16: 769860, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603132

RESUMO

Sleep manifests itself by the spontaneous emergence of characteristic oscillatory rhythms, which often time-lock and are implicated in memory formation. Here, we analyze a neural mass model of the thalamocortical loop in which the cortical node can generate slow oscillations (approximately 1 Hz) while its thalamic component can generate fast sleep spindles of σ-band activity (12-15 Hz). We study the dynamics for different coupling strengths between the thalamic and cortical nodes, for different conductance values of the thalamic node's potassium leak and hyperpolarization-activated cation-nonselective currents, and for different parameter regimes of the cortical node. The latter are listed as follows: (1) a low activity (DOWN) state with noise-induced, transient excursions into a high activity (UP) state, (2) an adaptation induced slow oscillation limit cycle with alternating UP and DOWN states, and (3) a high activity (UP) state with noise-induced, transient excursions into the low activity (DOWN) state. During UP states, thalamic spindling is abolished or reduced. During DOWN states, the thalamic node generates sleep spindles, which in turn can cause DOWN to UP transitions in the cortical node. Consequently, this leads to spindle-induced UP state transitions in parameter regime (1), thalamic spindles induced in some but not all DOWN states in regime (2), and thalamic spindles following UP to DOWN transitions in regime (3). The spindle-induced σ-band activity in the cortical node, however, is typically the strongest during the UP state, which follows a DOWN state "window of opportunity" for spindling. When the cortical node is parametrized in regime (3), the model well explains the interactions between slow oscillations and sleep spindles observed experimentally during Non-Rapid Eye Movement sleep. The model is computationally efficient and can be integrated into large-scale modeling frameworks to study spatial aspects like sleep wave propagation.

12.
Front Comput Neurosci ; 16: 825865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185505

RESUMO

Gamma rhythms play a major role in many different processes in the brain, such as attention, working memory, and sensory processing. While typically considered detrimental, counterintuitively noise can sometimes have beneficial effects on communication and information transfer. Recently, Meng and Riecke showed that synchronization of interacting networks of inhibitory neurons in the gamma band (i.e., gamma generated through an ING mechanism) increases while synchronization within these networks decreases when neurons are subject to uncorrelated noise. However, experimental and modeling studies point towardz an important role of the pyramidal-interneuronal network gamma (PING) mechanism in the cortex. Therefore, we investigated the effect of uncorrelated noise on the communication between excitatory-inhibitory networks producing gamma oscillations via a PING mechanism. Our results suggest that, at least in a certain range of noise strengths and natural frequency differences between the regions, synaptic noise can have a supporting role in facilitating inter-regional communication, similar to the ING case for a slightly larger parameter range. Furthermore, the noise-induced synchronization between networks is generated via a different mechanism than when synchronization is mediated by strong synaptic coupling. Noise-induced synchronization is achieved by lowering synchronization within networks which allows the respective other network to impose its own gamma rhythm resulting in synchronization between networks.

13.
Phys Rev E ; 104(2-1): 024213, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525550

RESUMO

We apply the framework of optimal nonlinear control to steer the dynamics of a whole-brain network of FitzHugh-Nagumo oscillators. Its nodes correspond to the cortical areas of an atlas-based segmentation of the human cerebral cortex, and the internode coupling strengths are derived from diffusion tensor imaging data of the connectome of the human brain. Nodes are coupled using an additive scheme without delays and are driven by background inputs with fixed mean and additive Gaussian noise. Optimal control inputs to nodes are determined by minimizing a cost functional that penalizes the deviations from a desired network dynamic, the control energy, and spatially nonsparse control inputs. Using the strength of the background input and the overall coupling strength as order parameters, the network's state-space decomposes into regions of low- and high-activity fixed points separated by a high-amplitude limit cycle, all of which qualitatively correspond to the states of an isolated network node. Along the borders, however, additional limit cycles, asynchronous states, and multistability can be observed. Optimal control is applied to several state-switching and network synchronization tasks, and the results are compared to controllability measures from linear control theory for the same connectome. We find that intuitions from the latter about the roles of nodes in steering the network dynamics, which are solely based on connectome features, do not generally carry over to nonlinear systems, as had been previously implied. Instead, the role of nodes under optimal nonlinear control critically depends on the specified task and the system's location in state space. Our results shed new light on the controllability of brain network states and may serve as an inspiration for the design of new paradigms for noninvasive brain stimulation.

14.
Front Psychiatry ; 12: 669783, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262489

RESUMO

The coordinated dynamic interactions of large-scale brain circuits and networks have been associated with cognitive functions and behavior. Recent advances in network neuroscience have suggested that the anatomical organization of such networks puts fundamental constraints on the dynamical landscape of brain activity, i.e., the different states, or patterns of regional activation, and transition between states the brain can display. Specifically, it has been shown that densely connected, central regions control the transition between states that are "easily" reachable (in terms of expended energy), whereas weakly connected areas control transitions to states that are hard-to-reach. Changes in large-scale brain activity have been hypothesized to underlie many neurological and psychiatric disorders. Evidence has emerged that large-scale dysconnectivity might play a crucial role in the pathophysiology of schizophrenia, especially regarding cognitive symptoms. Therefore, an analysis of graph and control theoretic measures of large-scale brain connectivity in patients offers to give insight into the emergence of cognitive disturbances in the disorder. To investigate these potential differences between patients with schizophrenia (SCZ), patients with schizoaffective disorder (SCZaff) and matched healthy controls (HC), we used structural MRI data to assess the microstructural organization of white matter. We first calculate seven graph measures of integration, segregation, centrality and resilience and test for group differences. Second, we extend our analysis beyond these traditional measures and employ a simplified noise-free linear discrete-time and time-invariant network model to calculate two complementary measures of controllability. Average controllability, which identifies brain areas that can guide brain activity into different, easily reachable states with little input energy and modal controllability, which characterizes regions that can push the brain into difficult-to-reach states, i.e., states that require substantial input energy. We identified differences in standard network and controllability measures for both patient groups compared to HCs. We found a strong reduction of betweenness centrality for both patient groups and a strong reduction in average controllability for the SCZ group again in comparison to the HC group. Our findings of network level deficits might help to explain the many cognitive deficits associated with these disorders.

15.
Front Hum Neurosci ; 15: 625983, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163337

RESUMO

Brain-computer interface (BCI) has developed rapidly over the past two decades, mainly due to advancements in machine learning. Subjects must learn to modulate their brain activities to ensure a successful BCI. Feedback training is a practical approach to this learning process; however, the commonly used classifier-dependent approaches have inherent limitations such as the need for calibration and a lack of continuous feedback over long periods of time. This paper proposes an online data visualization feedback protocol that intuitively reflects the EEG distribution in Riemannian geometry in real time. Rather than learning a hyperplane, the Riemannian geometry formulation allows iterative learning of prototypical covariance matrices that are translated into visualized feedback through diffusion map process. Ten subjects were recruited for MI-BCI (motor imagery-BCI) training experiments. The subjects learned to modulate their sensorimotor rhythm to centralize the points within one category and to separate points belonging to different categories. The results show favorable overall training effects in terms of the class distinctiveness and EEG feature discriminancy over a 3-day training with 30% learners. A steadily increased class distinctiveness in the last three sessions suggests that the advanced training protocol is effective. The optimal frequency band was consistent during the 3-day training, and the difference between subjects with good or low MI-BCI performance could be clearly observed. We believe that the proposed feedback protocol has promising application prospect.

16.
PLoS Comput Biol ; 17(2): e1008717, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33626037

RESUMO

[This corrects the article DOI: 10.1371/journal.pcbi.1007822.].

17.
Front Comput Neurosci ; 15: 800101, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095451

RESUMO

During slow-wave sleep, the brain is in a self-organized regime in which slow oscillations (SOs) between up- and down-states travel across the cortex. While an isolated piece of cortex can produce SOs, the brain-wide propagation of these oscillations are thought to be mediated by the long-range axonal connections. We address the mechanism of how SOs emerge and recruit large parts of the brain using a whole-brain model constructed from empirical connectivity data in which SOs are induced independently in each brain area by a local adaptation mechanism. Using an evolutionary optimization approach, good fits to human resting-state fMRI data and sleep EEG data are found at values of the adaptation strength close to a bifurcation where the model produces a balance between local and global SOs with realistic spatiotemporal statistics. Local oscillations are more frequent, last shorter, and have a lower amplitude. Global oscillations spread as waves of silence across the undirected brain graph, traveling from anterior to posterior regions. These traveling waves are caused by heterogeneities in the brain network in which the connection strengths between brain areas determine which areas transition to a down-state first, and thus initiate traveling waves across the cortex. Our results demonstrate the utility of whole-brain models for explaining the origin of large-scale cortical oscillations and how they are shaped by the connectome.

18.
Cell Rep ; 33(6): 108367, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33176154

RESUMO

In visual areas of primates, neurons activate in parallel while the animal is engaged in a behavioral task. In this study, we examine the structure of the population code while the animal performs delayed match-to-sample tasks on complex natural images. The macaque monkeys visualized two consecutive stimuli that were either the same or different, while being recorded with laminar arrays across the cortical depth in cortical areas V1 and V4. We decode correct choice behavior from neural populations of simultaneously recorded units. Utilizing decoding weights, we divide neurons into most informative and less informative and show that most informative neurons in V4, but not in V1, are more strongly synchronized, coupled, and correlated than less informative neurons. Because neurons are divided into two coding pools according to their coding preference, in V4, but not in V1, spiking synchrony, coupling, and correlations within the coding pool are stronger than across coding pools.


Assuntos
Córtex Visual , Animais , Haplorrinos , Masculino , Estimulação Luminosa
19.
PLoS Comput Biol ; 16(4): e1007822, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32324734

RESUMO

Electrical stimulation of neural systems is a key tool for understanding neural dynamics and ultimately for developing clinical treatments. Many applications of electrical stimulation affect large populations of neurons. However, computational models of large networks of spiking neurons are inherently hard to simulate and analyze. We evaluate a reduced mean-field model of excitatory and inhibitory adaptive exponential integrate-and-fire (AdEx) neurons which can be used to efficiently study the effects of electrical stimulation on large neural populations. The rich dynamical properties of this basic cortical model are described in detail and validated using large network simulations. Bifurcation diagrams reflecting the network's state reveal asynchronous up- and down-states, bistable regimes, and oscillatory regions corresponding to fast excitation-inhibition and slow excitation-adaptation feedback loops. The biophysical parameters of the AdEx neuron can be coupled to an electric field with realistic field strengths which then can be propagated up to the population description. We show how on the edge of bifurcation, direct electrical inputs cause network state transitions, such as turning on and off oscillations of the population rate. Oscillatory input can frequency-entrain and phase-lock endogenous oscillations. Relatively weak electric field strengths on the order of 1 V/m are able to produce these effects, indicating that field effects are strongly amplified in the network. The effects of time-varying external stimulation are well-predicted by the mean-field model, further underpinning the utility of low-dimensional neural mass models.


Assuntos
Estimulação Elétrica , Modelos Neurológicos , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Fenômenos Biofísicos/fisiologia , Biologia Computacional , Simulação por Computador , Humanos
20.
PLoS One ; 14(10): e0222649, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31622346

RESUMO

We propose a new model of the read-out of spike trains that exploits the multivariate structure of responses of neural ensembles. Assuming the point of view of a read-out neuron that receives synaptic inputs from a population of projecting neurons, synaptic inputs are weighted with a heterogeneous set of weights. We propose that synaptic weights reflect the role of each neuron within the population for the computational task that the network has to solve. In our case, the computational task is discrimination of binary classes of stimuli, and weights are such as to maximize the discrimination capacity of the network. We compute synaptic weights as the feature weights of an optimal linear classifier. Once weights have been learned, they weight spike trains and allow to compute the post-synaptic current that modulates the spiking probability of the read-out unit in real time. We apply the model on parallel spike trains from V1 and V4 areas in the behaving monkey macaca mulatta, while the animal is engaged in a visual discrimination task with binary classes of stimuli. The read-out of spike trains with our model allows to discriminate the two classes of stimuli, while population PSTH entirely fails to do so. Splitting neurons in two subpopulations according to the sign of the weight, we show that population signals of the two functional subnetworks are negatively correlated. Disentangling the superficial, the middle and the deep layer of the cortex, we show that in both V1 and V4, superficial layers are the most important in discriminating binary classes of stimuli.


Assuntos
Comportamento Animal/fisiologia , Macaca mulatta/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Potenciais de Ação/fisiologia , Animais , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Simulação por Computador , Discriminação Psicológica/fisiologia , Humanos , Aprendizagem/fisiologia , Modelos Neurológicos , Sinapses/fisiologia , Córtex Visual/fisiologia , Percepção Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA