Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Exp Neurol ; 353: 114058, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35358498

RESUMO

Traumatic brain injury (TBI) impairs the ability to restore homeostasis in response to stress, indicating hypothalamic-pituitary-adrenal (HPA)-axis dysfunction. Many stressors result in sleep disturbances, thus mechanical sleep fragmentation (SF) provides a physiologically relevant approach to study the effects of stress after injury. We hypothesize SF stress engages the dysregulated HPA-axis after TBI to exacerbate post-injury neuroinflammation and compromise recovery. To test this, male and female mice were given moderate lateral fluid percussion TBI or sham-injury and left undisturbed or exposed to daily, transient SF for 7- or 30-days post-injury (DPI). Post-TBI SF increases cortical expression of interferon- and stress-associated genes characterized by inhibition of the upstream regulator NR3C1 that encodes glucocorticoid receptor (GR). Moreover, post-TBI SF increases neuronal activity in the hippocampus, a key intersection of the stress-immune axes. By 30 DPI, TBI SF enhances cortical microgliosis and increases expression of pro-inflammatory glial signaling genes characterized by persistent inhibition of the NR3C1 upstream regulator. Within the hippocampus, post-TBI SF exaggerates microgliosis and decreases CA1 neuronal activity. Downstream of the hippocampus, post-injury SF suppresses neuronal activity in the hypothalamic paraventricular nucleus indicating decreased HPA-axis reactivity. Direct application of GR agonist, dexamethasone, to the CA1 at 30 DPI increases GR activity in TBI animals, but not sham animals, indicating differential GR-mediated hippocampal action. Electrophysiological assessment revealed TBI and SF induces deficits in Schaffer collateral long-term potentiation associated with impaired acquisition of trace fear conditioning, reflecting dorsal hippocampal-dependent cognitive deficits. Together these data demonstrate that post-injury SF engages the dysfunctional post-injury HPA-axis, enhances inflammation, and compromises hippocampal function. Therefore, external stressors that disrupt sleep have an integral role in mediating outcome after brain injury.


Assuntos
Lesões Encefálicas Traumáticas , Privação do Sono , Animais , Lesões Encefálicas Traumáticas/metabolismo , Feminino , Hipocampo/metabolismo , Inflamação/metabolismo , Potenciação de Longa Duração , Masculino , Camundongos , Privação do Sono/complicações , Privação do Sono/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA