Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Adv Exp Med Biol ; 1427: 73-81, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322337

RESUMO

Obstructive sleep apnea (OSA) during pregnancy is characterized by episodes of intermittent hypoxia (IH) during sleep, resulting in adverse health outcomes for mother and offspring. Despite a prevalence of 8-20% in pregnant women, this disorder is often underdiagnosed.We have developed a murine model of gestational OSA to study IH effects on pregnant mothers, placentas, fetuses, and offspring. One group of pregnant rats was exposed to IH during the last 2 weeks of gestation (GIH). One day before the delivery date, a cesarean section was performed. Other group of pregnant rats was allowed to give birth at term to study offspring's evolution.Preliminary results showed no significant weight differences in mothers and fetuses. However, the weight of GIH male offspring was significantly lower than the controls at 14 days (p < 0.01). The morphological study of the placentas showed an increase in fetal capillary branching, expansion of maternal blood spaces, and number of cells of the external trophectoderm in the tissues from GIH-exposed mothers. Additionally, the placentas from the experimental males were enlarged (p < 0.05). Further studies are needed to follow the long-term evolution of these changes to relate the histological findings of the placentas with functional development of the offspring in adulthood.


Assuntos
Placenta , Apneia Obstrutiva do Sono , Camundongos , Animais , Gravidez , Feminino , Ratos , Masculino , Humanos , Modelos Animais de Doenças , Cesárea , Hipóxia , Desenvolvimento Fetal , Parto
2.
Adv Exp Med Biol ; 1427: 89-97, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37322339

RESUMO

This work analyzes the impact of two conditions, intermittent hypoxia exposure and high-fat diet in rats as models of sleep apnea. We studied the autonomic activity and histological structure of the rat jejunum and whether the overlapping of both conditions, as often observed in patients, induces more deleterious effects on the intestinal barrier. We found alterations in jejunum wall histology, predominantly in HF rats, based on increased crypt depth and submucosal thickness, as well as decreased muscularis propria thickness. These alterations were maintained with the IH and HF overlap. An increase in the number and size of goblet cells in the villi and crypts and the infiltration of eosinophils and lymphocytes in the lamina propria suggest an inflammatory status, confirmed by the increase in plasma CRP levels in all experimental groups. Regarding the CAs analysis, IH, alone or combined with HF, causes a preferential accumulation of NE in the catecholaminergic nerve fibers of the jejunum. In contrast, serotonin increases in all three experimental conditions, with the highest level in the HF group. It remains to be elucidated whether the alterations found in the present work could affect the permeability of the intestinal barrier, promoting sleep apnea-induced morbidities.


Assuntos
Obesidade , Síndromes da Apneia do Sono , Camundongos , Ratos , Animais , Modelos Animais de Doenças , Obesidade/complicações , Dieta Hiperlipídica/efeitos adversos , Hipóxia/complicações
3.
Antioxidants (Basel) ; 10(8)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34439481

RESUMO

Several studies demonstrated a link between obstructive sleep apnea (OSA) and the development of insulin resistance. However, the main event triggering insulin resistance in OSA remains to be clarified. Herein, we investigated the effect of mild and severe chronic intermittent hypoxia (CIH) on whole-body metabolic deregulation and visceral adipose tissue dysfunction. Moreover, we studied the contribution of obesity to CIH-induced dysmetabolic states. Experiments were performed in male Wistar rats submitted to a control and high-fat (HF) diet. Two CIH protocols were tested: A mild CIH paradigm (5/6 hypoxic (5% O2) cycles/h, 10.5 h/day) during 35 days and a severe CIH paradigm (30 hypoxic (5% O2) cycles, 8 h/day) during 15 days. Fasting glycemia, insulinemia, insulin sensitivity, weight, and fat mass were assessed. Adipose tissue hypoxia, inflammation, angiogenesis, oxidative stress, and metabolism were investigated. Mild and severe CIH increased insulin levels and induced whole-body insulin resistance in control animals, effects not associated with weight gain. In control animals, CIH did not modify adipocytes perimeter as well as adipose tissue hypoxia, angiogenesis, inflammation or oxidative stress. In HF animals, severe CIH attenuated the increase in adipocytes perimeter, adipose tissue hypoxia, angiogenesis, and dysmetabolism. In conclusion, adipose tissue dysfunction is not the main trigger for initial dysmetabolism in CIH. CIH in an early stage might have a protective role against the deleterious effects of HF diet on adipose tissue metabolism.

4.
Antioxidants (Basel) ; 11(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35052557

RESUMO

Chronic sustained hypoxia (CSH), as found in individuals living at a high altitude or in patients suffering respiratory disorders, initiates physiological adaptations such as carotid body stimulation to maintain oxygen levels, but has deleterious effects such as pulmonary hypertension (PH). Obstructive sleep apnea (OSA), a respiratory disorder of increasing prevalence, is characterized by a situation of chronic intermittent hypoxia (CIH). OSA is associated with the development of systemic hypertension and cardiovascular pathologies, due to carotid body and sympathetic overactivation. There is growing evidence that CIH can also compromise the pulmonary circulation, causing pulmonary hypertension in OSA patients and animal models. The aim of this work was to compare hemodynamics, vascular contractility, and L-arginine-NO metabolism in two models of PH in rats, associated with CSH and CIH exposure. We demonstrate that whereas CSH and CIH cause several common effects such as an increased hematocrit, weight loss, and an increase in pulmonary artery pressure (PAP), compared to CIH, CSH seems to have more of an effect on the pulmonary circulation, whereas the effects of CIH are apparently more targeted on the systemic circulation. The results suggest that the endothelial dysfunction evident in pulmonary arteries with both hypoxia protocols are not due to an increase in methylated arginines in these arteries, although an increase in plasma SDMA could contribute to the apparent loss of basal NO-dependent vasodilation and, therefore, the increase in PAP that results from CIH.

5.
Int J Mol Sci ; 21(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756352

RESUMO

Carotid bodies (CBs) are peripheral chemoreceptors that sense changes in blood O2, CO2, and pH levels. Apart from ventilatory control, these organs are deeply involved in the homeostatic regulation of carbohydrates and lipid metabolism and inflammation. It has been described that CB dysfunction is involved in the genesis of metabolic diseases and that CB overactivation is present in animal models of metabolic disease and in prediabetes patients. Additionally, resection of the CB-sensitive nerve, the carotid sinus nerve (CSN), or CB ablation in animals prevents and reverses diet-induced insulin resistance and glucose intolerance as well as sympathoadrenal overactivity, meaning that the beneficial effects of decreasing CB activity on glucose homeostasis are modulated by target-related efferent sympathetic nerves, through a reflex initiated in the CBs. In agreement with our pre-clinical data, hyperbaric oxygen therapy, which reduces CB activity, improves glucose homeostasis in type 2 diabetes patients. Insulin, leptin, and pro-inflammatory cytokines activate the CB. In this manuscript, we review in a concise manner the putative pathways linking CB chemoreceptor deregulation with the pathogenesis of metabolic diseases and discuss and present new data that highlight the roles of hyperinsulinemia, hyperleptinemia, and chronic inflammation as major factors contributing to CB dysfunction in metabolic disorders.


Assuntos
Corpo Carotídeo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Mediadores da Inflamação/metabolismo , Obesidade/metabolismo , Células Quimiorreceptoras/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Resistência à Insulina/genética , Metabolismo dos Lipídeos/genética , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Obesidade/genética , Obesidade/patologia
6.
Int J Mol Sci ; 21(14)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664461

RESUMO

The sleep apnea-hypopnea syndrome (SAHS) involves periods of intermittent hypoxia, experimentally reproduced by exposing animal models to oscillatory PO2 patterns. In both situations, chronic intermittent hypoxia (CIH) exposure produces carotid body (CB) hyperactivation generating an increased input to the brainstem which originates sympathetic hyperactivity, followed by hypertension that is abolished by CB denervation. CB has dopamine (DA) receptors in chemoreceptor cells acting as DA-2 autoreceptors. The aim was to check if blocking DA-2 receptors could decrease the CB hypersensitivity produced by CIH, minimizing CIH-related effects. Domperidone (DOM), a selective peripheral DA-2 receptor antagonist that does not cross the blood-brain barrier, was used to examine its effect on CIH (30 days) exposed rats. Arterial pressure, CB secretory activity and whole-body plethysmography were measured. DOM, acute or chronically administered during the last 15 days of CIH, reversed the hypertension produced by CIH, an analogous effect to that obtained with CB denervation. DOM marginally decreased blood pressure in control animals and did not affect hypoxic ventilatory response in control or CIH animals. No adverse effects were observed. DOM, used as gastrokinetic and antiemetic drug, could be a therapeutic opportunity for hypertension in SAHS patients' resistant to standard treatments.


Assuntos
Antagonistas de Dopamina/farmacologia , Hipertensão/tratamento farmacológico , Hipóxia/tratamento farmacológico , Receptores Dopaminérgicos/metabolismo , Animais , Pressão Sanguínea/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Corpo Carotídeo/efeitos dos fármacos , Corpo Carotídeo/metabolismo , Células Quimiorreceptoras/efeitos dos fármacos , Células Quimiorreceptoras/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Hipertensão/metabolismo , Hipóxia/metabolismo , Masculino , Ratos , Ratos Wistar , Apneia Obstrutiva do Sono/tratamento farmacológico , Apneia Obstrutiva do Sono/metabolismo
7.
Antioxidants (Basel) ; 8(3)2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30871199

RESUMO

Carotid body (CB) chemoreceptor cells sense arterial blood PO2, generating a neurosecretory response proportional to the intensity of hypoxia. Hydrogen sulfide (H2S) is a physiological gaseous messenger that is proposed to act as an oxygen sensor in CBs, although this concept remains controversial. In the present study we have used the H2S scavenger and vitamin B12 analog hydroxycobalamin (Cbl) as a new tool to investigate the involvement of endogenous H2S in CB oxygen sensing. We observed that the slow-release sulfide donor GYY4137 elicited catecholamine release from isolated whole carotid bodies, and that Cbl prevented this response. Cbl also abolished the rise in [Ca2+]i evoked by 50 µM NaHS in enzymatically dispersed CB glomus cells. Moreover, Cbl markedly inhibited the catecholamine release and [Ca2+]i rise caused by hypoxia in isolated CBs and dispersed glomus cells, respectively, whereas it did not alter these responses when they were evoked by high [K⁺]e. The L-type Ca2+ channel blocker nifedipine slightly inhibited the rise in CB chemoreceptor cells [Ca2+]i elicited by sulfide, whilst causing a somewhat larger attenuation of the hypoxia-induced Ca2+ signal. We conclude that Cbl is a useful and specific tool for studying the function of H2S in cells. Based on its effects on the CB chemoreceptor cells we propose that endogenous H2S is an amplifier of the hypoxic transduction cascade which acts mainly by stimulating non-L-type Ca2+ channels.

8.
Adv Exp Med Biol ; 1071: 167-174, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30357748

RESUMO

Guinea pigs (GP), originally from the Andes, have absence of hypoxia-driven carotid body (CB) reflex. Neonatal mammals have an immature CB chemo reflex and respond to hypoxia with metabolic changes arising from direct effects of hypoxia on adrenal medulla (AM). Our working hypothesis is that adult GP would mimic neonatal mammals. Plasma epinephrine (E) has an AM origin, while norepinephrine (NE) is mainly originated in sympathetic endings, implying that specific GP changes in plasma E/NE ratio, and in blood glucose and lactate levels during hypoxia would be observed. Experiments were performed on young adult GP and rats. Hypoxic ventilation (10% O2) increased E and NE plasma levels similarly in both species but PaO2 was lower in GP than in rats. Plasma E/NE ratio in GP was higher (≈1.0) than in rats (≈0.5). The hypoxia-evoked increases in blood glucose and lactate were smaller in GP than in the rat. The AM of both species contain comparable E content, but NE was four times lower in GP than in rats. GP superior cervical ganglion also had lower NE content than rats and an unusual high level of dopamine, a negative modulator of sympathetic transmission. Isolated AM from GP released half of E and one tenth of NE than the rat AM, and hypoxia did not alter the time course of CA outflow. These data indicate the absence of direct effects of hypoxia on AM in the GP, and a lower noradrenergic tone in this species. Pathways for hypoxic sympatho-adrenal system activation in GP are discussed.


Assuntos
Medula Suprarrenal/fisiologia , Corpo Carotídeo/fisiologia , Hipóxia/fisiopatologia , Animais , Epinefrina/sangue , Cobaias , Norepinefrina/sangue , Ratos , Reflexo
9.
Front Physiol ; 9: 694, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29922183

RESUMO

Clinical and experimental evidence indicates a positive correlation between chronic intermittent hypoxia (CIH), increased carotid body (CB) chemosensitivity, enhanced sympatho-respiratory coupling and arterial hypertension and cardiovascular disease. Several groups have reported that both the afferent and efferent arms of the CB chemo-reflex are enhanced in CIH animal models through the oscillatory CB activation by recurrent hypoxia/reoxygenation episodes. Accordingly, CB ablation or denervation results in the reduction of these effects. To date, no studies have determined the effects of CIH treatment in chemo-reflex sensitization in guinea pig, a rodent with a hypofunctional CB and lacking ventilatory responses to hypoxia. We hypothesized that the lack of CB hypoxia response in guinea pig would suppress chemo-reflex sensitization and thereby would attenuate or eliminate respiratory, sympathetic and cardiovascular effects of CIH treatment. The main purpose of this study was to assess if guinea pig CB undergoes overactivation by CIH and to correlate CIH effects on CB chemoreceptors with cardiovascular and respiratory responses to hypoxia. We measured CB secretory activity, ventilatory parameters, systemic arterial pressure and sympathetic activity, basal and in response to acute hypoxia in two groups of animals: control and 30 days CIH exposed male guinea pigs. Our results indicated that CIH guinea pig CB lacks activity elicited by acute hypoxia measured as catecholamine (CA) secretory response or intracellular calcium transients. Plethysmography data showed that only severe hypoxia (7% O2) and hypercapnia (5% CO2) induced a significant increased ventilatory response in CIH animals, together with higher oxygen consumption. Therefore, CIH exposure blunted hyperventilation to hypoxia and hypercapnia normalized to oxygen consumption. Increase in plasma CA and superior cervical ganglion CA content was found, implying a CIH induced sympathetic hyperactivity. CIH promoted cardiovascular adjustments by increasing heart rate and mean arterial blood pressure without cardiac ventricle hypertrophy. In conclusion, CIH does not sensitize CB chemoreceptor response to hypoxia but promotes cardiovascular adjustments probably not mediated by the CB. Guinea pigs could represent an interesting model to elucidate the mechanisms that underlie the long-term effects of CIH exposure to provide evidence for the role of the CB mediating pathological effects in sleep apnea diseases.

10.
J Physiol ; 596(15): 3187-3199, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29271068

RESUMO

KEY POINTS: Leptin plays a role in the control of breathing, acting mainly on central nervous system; however, leptin receptors have been recently shown to be expressed in the carotid body (CB), and this finding suggests a physiological role for leptin in the regulation of CB function. Leptin increases minute ventilation in both basal and hypoxic conditions in rats. It increases the frequency of carotid sinus nerve discharge in basal conditions, as well as the release of adenosine from the CB. However, in a metabolic syndrome animal model, the effects of leptin in ventilatory control, carotid sinus nerve activity and adenosine release by the CB are blunted. Although leptin may be involved in triggering CB overactivation in initial stages of obesity and dysmetabolism, resistance to leptin signalling and blunting of responses develops in metabolic syndrome animal models. ABSTRACT: Leptin plays a role in the control of breathing, acting mainly on central nervous system structures. Leptin receptors are expressed in the carotid body (CB) and this finding has been associated with a putative physiological role of leptin in the regulation of CB function. Since, the CBs are implicated in energy metabolism, here we tested the effects of different concentrations of leptin administration on ventilatory parameters and on carotid sinus nerve (CSN) activity in control and high-fat (HF) diet fed rats, in order to clarify the role of leptin in ventilation control in metabolic disease states. We also investigated the expression of leptin receptors and the neurotransmitters involved in leptin signalling in the CBs. We found that in non-disease conditions, leptin increases minute ventilation in both basal and hypoxic conditions. However, in the HF model, the effect of leptin in ventilatory control is blunted. We also observed that HF rats display an increased frequency of CSN discharge in basal conditions that is not altered by leptin, in contrast to what is observed in control animals. Leptin did not modify intracellular Ca2+ in CB chemoreceptor cells, but it produced an increase in the release of adenosine from the whole CB. We conclude that CBs represent an important target for leptin signalling, not only to coordinate peripheral ventilatory chemoreflexive drive, but probably also to modulate metabolic variables. We also concluded that leptin signalling is mediated by adenosine release and that HF diets blunt leptin responses in the CB, compromising ventilatory adaptation.


Assuntos
Corpo Carotídeo/efeitos dos fármacos , Dieta Hiperlipídica , Leptina/farmacologia , Ventilação Pulmonar/efeitos dos fármacos , Adenosina/fisiologia , Animais , Corpo Carotídeo/fisiologia , Seio Carotídeo/inervação , Seio Carotídeo/fisiologia , Hipóxia/fisiopatologia , Resistência à Insulina , Masculino , Ratos Wistar , Receptores para Leptina/metabolismo , Respiração/efeitos dos fármacos
11.
J Appl Physiol (1985) ; 123(5): 1047-1054, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28642292

RESUMO

Intermittent hypoxia (IH) has been implicated in the cardiovascular consequences of obstructive sleep apnea (OSA). However, the lack of suitable experimental systems has precluded assessment as to whether IH is detrimental, protective, or both for the endothelium. The aim of the work was to determine the effects of frequency and amplitude of IH oxygenation swings on aortic endothelial wound healing. Monolayers of human primary endothelial cells were wounded and subjected to constant oxygenation (1%, 4%, 13%, or 20% O2) or IH at different frequencies (0.6, 6, or 60 cycles/h) and magnitude ranges (13-4% O2 or 20-1% O2), using a novel well-controlled system, with wound healing being measured after 24 h. Cell monolayer repair was similar at 20% O2 and 13% O2, but was considerably increased (approximately twofold) in constant hypoxia at 4% O2 The magnitude and frequency of IH considerably modulated wound healing. Cycles ranging 13-4% O2 at the lowest frequency (0.6 cycles/h) accelerated endothelial wound healing by 102%. However, for IH exposures consisting of 20% to 1% O2 oscillations, wound closure was reduced compared with oscillation in the 13-4% range (by 74% and 44% at 6 cycles/h and 0.6 cycles/h, respectively). High-frequency IH patterns simulating severe OSA (60 cycles/h) did not significantly modify endothelial wound closure, regardless of the oxygenation cycle amplitude. In conclusion, the frequency and magnitude of hypoxia cycling in IH markedly alter wound healing responses and emerge as key factors determining how cells will respond in OSA.NEW & NOTEWORTHY Intermittent hypoxia (IH) induces cardiovascular consequences in obstructive sleep apnea (OSA) patients. However, the vast array of frequencies and severities of IH previously employed in OSA-related experimental studies has led to controversial results on the effects of IH. By employing an optimized IH experimental system here, we provide evidence that the frequency and magnitude of IH markedly alter human aortic endothelial wound healing, emerging as key factors determining how cells respond in OSA.


Assuntos
Microambiente Celular , Células Endoteliais/metabolismo , Oxigênio/metabolismo , Síndromes da Apneia do Sono/metabolismo , Cicatrização , Hipóxia Celular , Células Cultivadas , Células Endoteliais/patologia , Humanos , Transdução de Sinais , Síndromes da Apneia do Sono/patologia , Fatores de Tempo
12.
Front Physiol ; 8: 285, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28533756

RESUMO

Mammals have developed different mechanisms to maintain oxygen supply to cells in response to hypoxia. One of those mechanisms, the carotid body (CB) chemoreceptors, is able to detect physiological hypoxia and generate homeostatic reflex responses, mainly ventilatory and cardiovascular. It has been reported that guinea pigs, originally from the Andes, have a reduced ventilatory response to hypoxia compared to other mammals, implying that CB are not completely functional, which has been related to genetically/epigenetically determined poor hypoxia-driven CB reflex. This study was performed to check the guinea pig CB response to hypoxia compared to the well-known rat hypoxic response. These experiments have explored ventilatory parameters breathing different gases mixtures, cardiovascular responses to acute hypoxia, in vitro CB response to hypoxia and other stimuli and isolated guinea pig chemoreceptor cells properties. Our findings show that guinea pigs are hypotensive and have lower arterial pO2 than rats, probably related to a low sympathetic tone and high hemoglobin affinity. Those characteristics could represent a higher tolerance to hypoxic environment than other rodents. We also find that although CB are hypo-functional not showing chronic hypoxia sensitization, a small percentage of isolated carotid body chemoreceptor cells contain tyrosine hydroxylase enzyme and voltage-dependent K+ currents and therefore can be depolarized. However hypoxia does not modify intracellular Ca2+ levels or catecholamine secretion. Guinea pigs are able to hyperventilate only in response to intense acute hypoxic stimulus, but hypercapnic response is similar to rats. Whether other brain areas are also activated by hypoxia in guinea pigs remains to be studied.

14.
Diabetologia ; 60(1): 158-168, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27744526

RESUMO

AIMS/HYPOTHESIS: We recently described that carotid body (CB) over-activation is involved in the aetiology of insulin resistance and arterial hypertension in animal models of the metabolic syndrome. Additionally, we have demonstrated that CB activity is increased in animal models of insulin resistance, and that carotid sinus nerve (CSN) resection prevents the development of insulin resistance and arterial hypertension induced by high-energy diets. Here, we tested whether the functional abolition of CB by CSN transection would reverse pre-established insulin resistance, dyslipidaemia, obesity, autonomic dysfunction and hypertension in animal models of the metabolic syndrome. The effect of CSN resection on insulin signalling pathways and tissue-specific glucose uptake was evaluated in skeletal muscle, adipose tissue and liver. METHODS: Experiments were performed in male Wistar rats submitted to two high-energy diets: a high-fat diet, representing a model of insulin resistance, hypertension and obesity, and a high-sucrose diet, representing a lean model of insulin resistance and hypertension. Half of each group was submitted to chronic bilateral resection of the CSN. Age-matched control rats were also used. RESULTS: CSN resection normalised systemic sympathetic nervous system activity and reversed weight gain induced by high-energy diets. It also normalised plasma glucose and insulin levels, insulin sensitivity lipid profile, arterial pressure and endothelial function by improving glucose uptake by the liver and perienteric adipose tissue. CONCLUSIONS/INTERPRETATION: We concluded that functional abolition of CB activity restores insulin sensitivity and glucose homeostasis by positively affecting insulin signalling pathways in visceral adipose tissue and liver.


Assuntos
Corpo Carotídeo/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Gordura Intra-Abdominal/metabolismo , Fígado/metabolismo , Animais , Western Blotting , Homeostase/fisiologia , Insulina/sangue , Resistência à Insulina/fisiologia , Masculino , Ratos , Ratos Wistar
15.
J Clin Sleep Med ; 12(10): 1379-1388, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27568890

RESUMO

STUDY OBJECTIVES: Low flow supplemental oxygen is commonly prescribed to patients with obesity hypoventilation syndrome (OHS). However, there is a paucity of data regarding its efficacy and safety. The objective of this study was to assess the medium-term treatment efficacy of adding supplemental oxygen therapy to commonly prescribed treatment modalities in OHS. METHODS: In this post hoc analysis of a previous randomized controlled trial, we studied 302 sequentially screened OHS patients who were randomly assigned to noninvasive ventilation, continuous positive airway pressure, or lifestyle modification. Outcomes at 2 mo included arterial blood gases, symptoms, quality of life, blood pressure, polysomnography, spirometry, 6-min walk distance, and hospital resource utilization. Statistical analysis comparing patients with and without oxygen therapy in the three treatment groups was performed using an intention-to-treat analysis. RESULTS: In the noninvasive ventilation group, supplemental oxygen reduced systolic blood pressure although this could be also explained by a reduction in body weight experienced in this group. In the continuous positive airway pressure group, supplemental oxygen increased the frequency of morning confusion. In the lifestyle modification group, supplemental oxygen increased compensatory metabolic alkalosis and decreased the apnea-hypopnea index during sleep. Oxygen therapy was not associated with an increase in hospital resource utilization in any of the groups. CONCLUSIONS: After 2 mo of follow-up, chronic oxygen therapy produced marginal changes that were insufficient to consider it, globally, as beneficial or deleterious. Because supplemental oxygen therapy did not increase hospital resource utilization, we recommend prescribing oxygen therapy to patients with OHS who meet criteria with close monitoring. Long-term studies examining outcomes such as incident cardiovascular morbidity and mortality are necessary. CLINICAL TRIALS REGISTRATION: Clinicaltrial.gov, ID: NCT01405976.


Assuntos
Síndrome de Hipoventilação por Obesidade/terapia , Oxigenoterapia/métodos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Gasometria/estatística & dados numéricos , Pressão Sanguínea , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Polissonografia/estatística & dados numéricos , Qualidade de Vida , Espanha , Espirometria/estatística & dados numéricos , Resultado do Tratamento , Caminhada/estatística & dados numéricos , Adulto Jovem
16.
Chest ; 150(1): 68-79, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26923627

RESUMO

BACKGROUND: Obesity hypoventilation syndrome (OHS) is associated with a high burden of cardiovascular morbidity (CVM) and mortality. The majority of patients with OHS have concomitant OSA, but there is a paucity of data on the association between CVM and OSA severity in patients with OHS. The objective of our study was to assess the association between CVM and OSA severity in a large cohort of patients with OHS. METHODS: In a cross-sectional analysis, we examined the association between OSA severity based on tertiles of oxygen desaturation index (ODI) and CVM in 302 patients with OHS. Logistic regression models were constructed to quantify the independent association between OSA severity and prevalent CVM after adjusting for various important confounders. RESULTS: The prevalence of CVM decreased significantly with increasing severity of OSA based on ODI as a continuous variable or ODI tertiles. This inverse relationship between OSA severity and prevalence of CVM was seen in the highest ODI tertile and it persisted despite adjustment for multiple confounders. Chronic heart failure had the strongest negative association with the highest ODI tertile. No significant CVM risk change was observed between the first and second ODI tertiles. Patients in the highest ODI tertile were younger, predominantly male, more obese, more hypersomnolent, had worse nocturnal and daytime gas exchange, lower prevalence of hypertension, better exercise tolerance, and fewer days hospitalized than patients in the lowest ODI tertile. CONCLUSIONS: In patients with OHS, the highest OSA severity phenotype was associated with reduced risk of CVM. This finding should guide the design of future clinical trials assessing the impact of interventions aimed at decreasing cardiovascular morbidity and mortality in patients with OHS. TRIAL REGISTRY: Clinicaltrial.gov; No.: NCT01405976; URL: www.clinicaltrials.gov.


Assuntos
Doenças Cardiovasculares , Síndrome de Hipoventilação por Obesidade , Idoso , Gasometria/métodos , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/mortalidade , Estudos Transversais , Feminino , Humanos , Hipóxia/diagnóstico , Hipóxia/etiologia , Masculino , Pessoa de Meia-Idade , Síndrome de Hipoventilação por Obesidade/sangue , Síndrome de Hipoventilação por Obesidade/complicações , Síndrome de Hipoventilação por Obesidade/diagnóstico , Síndrome de Hipoventilação por Obesidade/epidemiologia , Polissonografia/métodos , Prevalência , Fatores de Proteção , Índice de Gravidade de Doença , Espanha
17.
J Physiol ; 593(11): 2459-77, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25833164

RESUMO

KEY POINTS: Adult animals that have been perinatally exposed to oxygen-rich atmospheres (hyperoxia), recalling those used for oxygen therapy in infants, exhibit a loss of hypoxic pulmonary vasoconstriction, whereas vasoconstriction elicited by depolarizing agents is maintained. Loss of pulmonary hypoxic vasoconstriction is not linked to alterations in oxygen-sensitive K(+) currents in pulmonary artery smooth muscle cells. Loss of hypoxic vasoconstriction is associated with early postnatal oxidative damage and corrected by an antioxidant diet. Perinatal hyperoxia damages carotid body chemoreceptor cell function and the antioxidant diet does not reverse it. The hypoxia-elicited increase in erythropoietin plasma levels is not affected by perinatal hyperoxia. The potential clinical significance of the findings in clinical situations such as pneumonia, chronic obstructive pulmonary disease or general anaesthesia is considered. ABSTRACT: Adult mammalians possess three cell systems that are activated by acute bodily hypoxia: pulmonary artery smooth muscle cells (PASMC), carotid body chemoreceptor cells (CBCC) and erythropoietin (EPO)-producing cells. In rats, chronic perinatal hyperoxia causes permanent carotid body (CB) atrophy and functional alterations of surviving CBCC. There are no studies on PASMC or EPO-producing cells. Our aim is to define possible long-lasting functional changes in PASMC or EPO-producing cells (measured as EPO plasma levels) and, further, to analyse CBCC functional alterations. We used 3- to 4-month-old rats born and reared in a normal atmosphere or exposed to perinatal hyperoxia (55-60% O2 for the last 5-6 days of pregnancy and 4 weeks after birth). Perinatal hyperoxia causes an almost complete loss of hypoxic pulmonary vasoconstriction (HPV), which was correlated with lung oxidative status in early postnatal life and prevented by antioxidant supplementation in the diet. O2 -sensitivity of K(+) currents in the PASMC of hyperoxic animals is normal, indicating that their inhibition is not sufficient to trigger HPV. Perinatal hyperoxia also abrogated responses elicited by hypoxia on catecholamine and cAMP metabolism in the CB. An increase in EPO plasma levels elicited by hypoxia was identical in hyperoxic and control animals, implying a normal functioning of EPO-producing cells. The loss of HPV observed in adult rats and caused by perinatal hyperoxia, comparable to oxygen therapy in premature infants, might represent a previously unrecognized complication of such a medical intervention capable of aggravating medical conditions such as regional pneumonias, atelectases or general anaesthesia in adult life.


Assuntos
Hiperóxia/fisiopatologia , Hipóxia/fisiopatologia , Artéria Pulmonar/fisiopatologia , Animais , Antioxidantes/uso terapêutico , Corpo Carotídeo/fisiopatologia , Eritropoetina/sangue , Feminino , Hiperóxia/tratamento farmacológico , Gravidez , Ratos Wistar , Vasoconstrição
18.
Eur J Pharm Sci ; 70: 107-16, 2015 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25661425

RESUMO

Caffeine, a non-selective adenosine antagonist, has distinct effects on insulin sensitivity when applied acutely or chronically. Herein, we investigated the involvement of adenosine receptors on insulin resistance induced by single-dose caffeine administration. Additionally, the mechanism behind adenosine receptor-mediated caffeine effects in skeletal muscle was assessed. The effect of the administration of caffeine, 8-cycle-1,3-dipropylxanthine (DPCPX, A1 antagonist), 2-(2-Furanyl)-7-(2-phenylethyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine (SCH58261, A2A antagonist) and 8-(4-{[(4-cyanophenyl)carbamoylmethyl]-oxy}phenyl)-1,3-di(n-propyl)xanthine (MRS1754, A2B antagonist) on whole-body insulin sensitivity was tested. Skeletal muscle Glut4,5'-AMP activated protein kinase (AMPK) and adenosine receptor protein expression were also assessed. The effect of A1 and A2B adenosine agonists on skeletal muscle glucose uptake was evaluated in vitro. Sodium nitroprussiate (SNP, 10nM), a nitric oxide (NO) donor, was used to evaluate the effect of NO on insulin resistance induced by adenosine antagonists. Acute caffeine decreased insulin sensitivity in a concentration dependent manner (Emax=55.54±5.37%, IC50=11.61nM), an effect that was mediated by A1 and A2B adenosine receptors. Additionally, acute caffeine administration significantly decreased Glut4, but not AMPK expression, in skeletal muscle. We found that A1, but not A2B agonists increased glucose uptake in skeletal muscle. SNP partially reversed DPCPX and MRS1754 induced-insulin resistance. Our results suggest that insulin resistance induced by acute caffeine administration is mediated by A1 and A2B adenosine receptors. Both Glut4 and NO seem to be downstream effectors involved in insulin resistance induced by acute caffeine.


Assuntos
Cafeína/metabolismo , Cafeína/farmacologia , Resistência à Insulina/fisiologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Ratos , Ratos Wistar , Receptores Purinérgicos P1/metabolismo
19.
Front Physiol ; 5: 418, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25400585

RESUMO

The carotid bodies (CB) are peripheral chemoreceptors that sense changes in arterial blood O2, CO2, and pH levels. Hypoxia, hypercapnia, and acidosis activate the CB, which respond by increasing the action potential frequency in their sensory nerve, the carotid sinus nerve (CSN). CSN activity is integrated in the brain stem to induce a panoply of cardiorespiratory reflexes aimed, primarily, to normalize the altered blood gases, via hyperventilation, and to regulate blood pressure and cardiac performance, via sympathetic nervous system (SNS) activation. Besides its role in the cardiorespiratory control the CB has been proposed as a metabolic sensor implicated in the control of energy homeostasis and, more recently, in the regulation of whole body insulin sensitivity. Hypercaloric diets cause CB overactivation in rats, which seems to be at the origin of the development of insulin resistance and hypertension, core features of metabolic syndrome and type 2 diabetes. Consistent with this notion, CB sensory denervation prevents metabolic and hemodynamic alterations in hypercaloric feed animal. Obstructive sleep apnea (OSA) is another chronic disorder characterized by increased CB activity and intimately related with several metabolic and cardiovascular abnormalities. In this manuscript we review in a concise manner the putative pathways linking CB chemoreceptors deregulation with the pathogenesis of insulin resistance and arterial hypertension. Also, the link between chronic intermittent hypoxia (CIH) and insulin resistance is discussed. Then, a final section is devoted to debate strategies to reduce CB activity and its use for prevention and therapeutics of metabolic diseases with an emphasis on new exciting research in the modulation of bioelectronic signals, likely to be central in the future.

20.
J Appl Physiol (1985) ; 117(7): 706-19, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25103975

RESUMO

Obstructive sleep apnea (OSA) consists of sleep-related repetitive obstructions of upper airways that generate episodes of recurrent or intermittent hypoxia (IH). OSA commonly generates cardiovascular and metabolic pathologies defining the obstructive sleep apnea syndrome (OSAS). Literature usually links OSA-associated pathologies to IH episodes that would cause an oxidative status and a carotid body-mediated sympathetic hyperactivity. Because cardiovascular and metabolic pathologies in obese patients and those with OSAS are analogous, we used models (24-wk-old Wistar rats) of IH (applied from weeks 22 to 24) and diet-induced obesity (O; animals fed a high-fat diet from weeks 12 to 24) to define the effect of each individual maneuver and their combination on the oxidative status and sympathetic tone of animals, and to quantify cardiovascular and metabolic parameters and their deviation from normality. We found that IH and O cause an oxidative status (increased lipid peroxides and diminished activities of superoxide dismutases), an inflammatory status (augmented C-reactive protein and nuclear factor kappa-B activation), and sympathetic hyperactivity (augmented plasma and renal artery catecholamine levels and synthesis rate); combined treatments worsened those alterations. IH and O augmented liver lipid content and plasma cholesterol, triglycerides, leptin, glycemia, insulin levels, and HOMA index, and caused hypertension; most of these parameters were aggravated when IH and O were combined. IH diminished ventilatory response to hypoxia, and hypercapnia and O created a restrictive ventilatory pattern; a combination of treatments led to restrictive hypoventilation. Data demonstrate that IH and O cause comparable metabolic and cardiovascular pathologies via misregulation of the redox status and sympathetic hyperactivity.


Assuntos
Pressão Arterial/fisiologia , Glicemia/metabolismo , Hipóxia/metabolismo , Insulina/sangue , Obesidade/metabolismo , Estresse Oxidativo/fisiologia , Sistema Nervoso Simpático/metabolismo , Animais , Dieta Hiperlipídica , Hipóxia/fisiopatologia , Leptina/sangue , Lipídeos/sangue , Fígado/metabolismo , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Obesidade/etiologia , Obesidade/fisiopatologia , Ratos , Ratos Wistar , Sistema Nervoso Simpático/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA