Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
PLoS Comput Biol ; 20(4): e1011964, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38683881

RESUMO

Probing the architecture of neuronal circuits and the principles that underlie their functional organization remains an important challenge of modern neurosciences. This holds true, in particular, for the inference of neuronal connectivity from large-scale extracellular recordings. Despite the popularity of this approach and a number of elaborate methods to reconstruct networks, the degree to which synaptic connections can be reconstructed from spike-train recordings alone remains controversial. Here, we provide a framework to probe and compare connectivity inference algorithms, using a combination of synthetic ground-truth and in vitro data sets, where the connectivity labels were obtained from simultaneous high-density microelectrode array (HD-MEA) and patch-clamp recordings. We find that reconstruction performance critically depends on the regularity of the recorded spontaneous activity, i.e., their dynamical regime, the type of connectivity, and the amount of available spike-train data. We therefore introduce an ensemble artificial neural network (eANN) to improve connectivity inference. We train the eANN on the validated outputs of six established inference algorithms and show how it improves network reconstruction accuracy and robustness. Overall, the eANN demonstrated strong performance across different dynamical regimes, worked well on smaller datasets, and improved the detection of synaptic connectivity, especially inhibitory connections. Results indicated that the eANN also improved the topological characterization of neuronal networks. The presented methodology contributes to advancing the performance of inference algorithms and facilitates our understanding of how neuronal activity relates to synaptic connectivity.


Assuntos
Potenciais de Ação , Algoritmos , Modelos Neurológicos , Redes Neurais de Computação , Neurônios , Sinapses , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Animais , Neurônios/fisiologia , Biologia Computacional , Rede Nervosa/fisiologia , Microeletrodos , Técnicas de Patch-Clamp , Aprendizado de Máquina , Ratos
2.
Ultramicroscopy ; 249: 113719, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37003127

RESUMO

We present two open-source Python packages: "electron spectro-microscopy" (espm) and "electron microscopy tables" (emtables). The espm software enables the simulation of scanning transmission electron microscopy energy-dispersive X-ray spectroscopy datacubes, based on user-defined chemical compositions and spatial abundance maps of constituent phases. The simulation process uses X-ray emission cross-sections generated via state-of-the-art calculations made with emtables. These tables are designed to be easily modifiable, either manually or using espm. The simulation framework is designed to test the application of decomposition algorithms for the analysis of STEM-EDX spectrum images with access to a known ground truth. We validate our approach using the case of a complex geology-related sample, comparing raw simulated and experimental datasets and the outputs of their non-negative matrix factorization. In addition to testing machine learning algorithms, our packages will also help experimental design, for instance, predicting dataset characteristics or establishing minimum counts needed to measure nanoscale features.

3.
Elife ; 122023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083521

RESUMO

Background: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. Methods: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1-4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models' predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models' forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models' past predictive performance. Results: Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models' forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models' forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models' forecasts of deaths (N=763 predictions from 20 models). Across a 1-4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. Conclusions: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks. Funding: AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).


Assuntos
COVID-19 , Doenças Transmissíveis , Epidemias , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Previsões , Modelos Estatísticos , Estudos Retrospectivos
4.
Pharmacoepidemiol Drug Saf ; 32(3): 366-381, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36579709

RESUMO

PURPOSE: With increased concomitant chronic diseases in type 2 diabetes mellitus (T2DM), the use of multiple drugs increases as well as the risk of drug-drug interactions (DDI) and adverse drug reactions (ADR). Nevertheless, how medication patterns vary in T2DM patients across different sex and age groups is unclear. This study aims to identify and quantify common drug combinations in first-time metformin users with polypharmacy (≥5 co-medications). METHODS: New users of metformin were identified from the IQVIA Medical Research Data incorporating data from THIN, A Cegedim Database (2016-2019). A descriptive cohort study explored prescription patterns in patients with polypharmacy. The Apriori algorithm, used to find frequent item-sets in databases, was first-time applied to identify and quantify drug combinations of up to seven drugs to investigate potential harmful polypharmacy patterns. RESULTS: The cohort included 34 169 new-users of metformin, of which 20 854 (61.0%) received polypharmacy. Atorvastatin was the most frequently co-prescribed drug with metformin overall (38.7%), in women (34.3%) and men (42.6%). In the stratified analysis, a higher proportion of women received polypharmacy (65.6%) compared to men (57.4%). Moreover, the proportion of patients receiving polypharmacy increased with age (18-39 years = 30.4%, 40-59 years = 50.5%, 60-74 years = 70.9%, and ≥75 years = 84.3%). CONCLUSION: This study is the first to identify and quantify commonly prescribed combinations of drugs compounds in patients with polypharmacy using the Apriori algorithm. The high polypharmacy prevalence at all strata indicates the need to optimize polypharmacy to minimize DDI and ADR.


Assuntos
Diabetes Mellitus Tipo 2 , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Metformina , Masculino , Humanos , Feminino , Adolescente , Adulto Jovem , Adulto , Estudos de Coortes , Polimedicação , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/epidemiologia , Metformina/efeitos adversos , Interações Medicamentosas , Uso de Medicamentos , Mineração de Dados
5.
Proc Natl Acad Sci U S A ; 119(32): e2112656119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35921436

RESUMO

Since the beginning of the COVID-19 pandemic, many dashboards have emerged as useful tools to monitor its evolution, inform the public, and assist governments in decision-making. Here, we present a globally applicable method, integrated in a daily updated dashboard that provides an estimate of the trend in the evolution of the number of cases and deaths from reported data of more than 200 countries and territories, as well as 7-d forecasts. One of the significant difficulties in managing a quickly propagating epidemic is that the details of the dynamic needed to forecast its evolution are obscured by the delays in the identification of cases and deaths and by irregular reporting. Our forecasting methodology substantially relies on estimating the underlying trend in the observed time series using robust seasonal trend decomposition techniques. This allows us to obtain forecasts with simple yet effective extrapolation methods in linear or log scale. We present the results of an assessment of our forecasting methodology and discuss its application to the production of global and regional risk maps.


Assuntos
COVID-19 , Monitoramento Epidemiológico , Pandemias , COVID-19/mortalidade , Previsões , Humanos , Fatores de Tempo
6.
Rev Med Suisse ; 17(730): 524-528, 2021 Mar 17.
Artigo em Francês | MEDLINE | ID: mdl-33755361

RESUMO

A consortium of Swiss universities has set up a dashboard providing daily 7-day epidemic forecasting for 209 countries and territories around the world. Relayed on social networks, international media, and the sites of major public health agencies, these forecasts can help guiding public policy. However, the time horizon of these forecasts is limited and their accuracy is sometimes questionable, even at 7 days. Interdisciplinary research aimed at increasing the complexity of mathematical models can improve the accuracy of the forecasts provided.


Un consortium émanant de hautes écoles suisses a mis en place un tableau de bord fournissant quotidiennement des prévisions épidémiologiques à 7 jours pour 209 pays et territoires dans le monde. Relayées sur les réseaux sociaux, les médias internationaux et les sites des grandes agences de sécurité sanitaire, ces prévisions peuvent aider au guidage des politiques publiques. Cependant l'horizon de temps de ces prévisions est limité et leur précision parfois questionnable, même à 7 jours. Des pistes sont proposées à travers une recherche interdisciplinaire visant à complexifier les modèles mathématiques pour améliorer la précision des prévisions fournies.


Assuntos
Epidemias , Previsões , Humanos , Modelos Teóricos , Suíça/epidemiologia , Tempo
7.
Nat Genet ; 41(9): 965-7, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19701190

RESUMO

Recent studies have demonstrated that statistical methods can be used to detect the presence of a single individual within a study group based on summary data reported from genome-wide association studies (GWAS). We present an analytical and empirical study of the statistical power of such methods. We thereby aim to provide quantitative guidelines for researchers wishing to make a limited number of SNPs available publicly without compromising subjects' privacy.


Assuntos
Confidencialidade , Genoma Humano , Estudo de Associação Genômica Ampla/métodos , Modelos Estatísticos , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla/estatística & dados numéricos , Humanos
8.
Genome Biol ; 9 Suppl 1: S2, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18613946

RESUMO

BACKGROUND: Several years after sequencing the human genome and the mouse genome, much remains to be discovered about the functions of most human and mouse genes. Computational prediction of gene function promises to help focus limited experimental resources on the most likely hypotheses. Several algorithms using diverse genomic data have been applied to this task in model organisms; however, the performance of such approaches in mammals has not yet been evaluated. RESULTS: In this study, a standardized collection of mouse functional genomic data was assembled; nine bioinformatics teams used this data set to independently train classifiers and generate predictions of function, as defined by Gene Ontology (GO) terms, for 21,603 mouse genes; and the best performing submissions were combined in a single set of predictions. We identified strengths and weaknesses of current functional genomic data sets and compared the performance of function prediction algorithms. This analysis inferred functions for 76% of mouse genes, including 5,000 currently uncharacterized genes. At a recall rate of 20%, a unified set of predictions averaged 41% precision, with 26% of GO terms achieving a precision better than 90%. CONCLUSION: We performed a systematic evaluation of diverse, independently developed computational approaches for predicting gene function from heterogeneous data sources in mammals. The results show that currently available data for mammals allows predictions with both breadth and accuracy. Importantly, many highly novel predictions emerge for the 38% of mouse genes that remain uncharacterized.


Assuntos
Algoritmos , Camundongos/genética , Proteínas/genética , Proteínas/metabolismo , Animais , Camundongos/metabolismo
9.
Genome Biol ; 9 Suppl 1: S6, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18613950

RESUMO

In predicting hierarchical protein function annotations, such as terms in the Gene Ontology (GO), the simplest approach makes predictions for each term independently. However, this approach has the unfortunate consequence that the predictor may assign to a single protein a set of terms that are inconsistent with one another; for example, the predictor may assign a specific GO term to a given protein ('purine nucleotide binding') but not assign the parent term ('nucleotide binding'). Such predictions are difficult to interpret. In this work, we focus on methods for calibrating and combining independent predictions to obtain a set of probabilistic predictions that are consistent with the topology of the ontology. We call this procedure 'reconciliation'. We begin with a baseline method for predicting GO terms from a collection of data types using an ensemble of discriminative classifiers. We apply the method to a previously described benchmark data set, and we demonstrate that the resulting predictions are frequently inconsistent with the topology of the GO. We then consider 11 distinct reconciliation methods: three heuristic methods; four variants of a Bayesian network; an extension of logistic regression to the structured case; and three novel projection methods - isotonic regression and two variants of a Kullback-Leibler projection method. We evaluate each method in three different modes - per term, per protein and joint - corresponding to three types of prediction tasks. Although the principal goal of reconciliation is interpretability, it is important to assess whether interpretability comes at a cost in terms of precision and recall. Indeed, we find that many apparently reasonable reconciliation methods yield reconciled probabilities with significantly lower precision than the original, unreconciled estimates. On the other hand, we find that isotonic regression usually performs better than the underlying, unreconciled method, and almost never performs worse; isotonic regression appears to be able to use the constraints from the GO network to its advantage. An exception to this rule is the high precision regime for joint evaluation, where Kullback-Leibler projection yields the best performance.


Assuntos
Algoritmos , Proteínas/genética , Proteínas/metabolismo , Animais , Teorema de Bayes , Biologia Computacional , Humanos , Modelos Logísticos , Camundongos , Terminologia como Assunto
10.
Inf Process Med Imaging ; 20: 470-81, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17633722

RESUMO

We report on mathematical methods for the exploration of spatiotemporal dynamics of Magneto- and Electro-Encephalography (MEG / EEG) surface data and/or of the corresponding brain activity at the cortical level, with high temporal resolution. In this regard, we describe how the framework and numerical computation of the optical flow--a classical tool for motion analysis in computer vision--can be extended to non-flat 2-dimensional surfaces such as the scalp and the cortical mantle. We prove the concept and mathematical well-posedness of such an extension through regularizing constraints on the estimated velocity field, and discuss the quantitative evaluation of the optical flow. The method is illustrated by simulations and analysis of brain image sequences from a ball-catching paradigm.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Diagnóstico por Computador/métodos , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Magnetoencefalografia/métodos , Modelos Neurológicos , Algoritmos , Simulação por Computador , Diagnóstico por Imagem/métodos , Humanos , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA