Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Data Brief ; 44: 108555, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36111285

RESUMO

In this article, a dataset of age-depth modelling data, sedimentation rates and dust mass accumulation rates (MAR) from four loess-palaeosol sequences from the Carpathian Basin is presented. The dataset is related to the article "Detailed luminescence dating of dust mass accumulation rates over the last two glacial-interglacial cycles from the Irig loess-palaeosol sequence, Carpathian Basin", published in the journal Global and Planetary Change by Peric et al. [1]. In the dataset, luminescence ages from the loess sites Irig, Nosak, Stari Slankamen and Crvenka were modeled using the r.bacon software after which the dust mass accumulation rates were calculated. For a more realistic representation the MARs were subsequently smoothed using the SigmaPlot software. For all sites, minimum, maximum, median and mean values for the modelled ages and accumulation rates are calculated and presented.

2.
Boreas ; 49(3): 615-633, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32999524

RESUMO

The loess-palaeosol sequence of Batajnica (Vojvodina region, Serbia) is considered as one of the most complete and thickest terrestrial palaeoclimate archives for the Middle and Late Pleistocene. In order to achieve a numerical chronology for this profile, four sets of ages were obtained on 18 individual samples. Equivalent doses were determined using the SAR protocol on fine (4-11 µm) and coarse (63-90 µm) quartz fractions, as well as on polymineral fine grains by using two elevated temperature infrared stimulation methods, pIRIR 290 and pIRIR 225. We show that the upper age limit of coarse quartz OSL and polymineral pIRIR 290 and pIRIR 225 techniques is restricted to the Last Glacial/Interglacial cycle due to the field saturation of the natural signals. Luminescence ages on coarse quartz, pIRIR 225 and pIRIR 290 polymineral fine grains are in general agreement. Fine quartz ages are systematically lower than the coarse quartz and pIRIR ages, the degree of underestimation increasing with age. Comparison between natural and laboratory dose response curves indicate the age range over which each protocol provides reliable ages. For fine and coarse quartz, the natural and laboratory dose response curves overlap up to ~150 and ~250 Gy, respectively, suggesting that the SAR protocol provides reliable ages up to c. 50 ka on fine quartz and c. 100 ka on coarse quartz. Using the pIRIR 225 and pIRIR 290 protocols, equivalent doses up to ~400 Gy can be determined, beyond which in the case of the former the natural dose response curve slightly overestimates the laboratory dose response curve. Our results suggest that the choice of the mineral and luminescence technique to be used for dating loess sediments should take into consideration the reported limited reliability.

3.
Sci Rep ; 10(1): 5455, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214119

RESUMO

Millennial-scale palaeoclimate variability has been documented in various terrestrial and marine palaeoclimate proxy records throughout the Northern Hemisphere for the last glacial cycle. Its clear expression and rapid shifts between different states of climate (Greenland Interstadials and Stadials) represents a correlation tool beyond the resolution of e.g. luminescence dating, especially relevant for terrestrial deposits. Usually, comparison of terrestrial proxy datasets and the Greenland ice cores indicates a complex expression of millennial-scale climate variability as recorded in terrestrial geoarchives including loess. Loess is the most widespread terrestrial geoarchive of the Quaternary and especially widespread over Eurasia. However, loess often records a smoothed representation of millennial-scale variability without all fidelity when compared to the Greenland data, this being a relevant limiting feature in integrating loess with other palaeoclimate records. To better understand the loess proxy-response to millennial-scale climate variability, we simulate a proxy signal smoothing by natural processes through application of low-pass filters of δ18O data from Greenland, a high-resolution palaeoclimate reference record, alongside speleothem isotope records from the Black Sea-Mediterranean region. We show that low-pass filters represent rather simple models for better constraining the expression of millennial-scale climate variability in low sedimentation environments, and in sediments where proxy-response signals are most likely affected by natural smoothing (by e.g. bioturbation). Interestingly, smoothed datasets from Greenland and the Black Sea-Mediterranean region are most similar in the last ~15 ka and between ~50-30 ka. Between ~30-15 ka, roughly corresponding to the Last Glacial Maximum and the deglaciation, the records show dissimilarities, challenging the construction of robust correlative time-scales in this age range. From our analysis it becomes apparent that patterns of palaeoclimate signals in loess-palaeosol sequences often might be better explained by smoothed Greenland reference data than the original high-resolution Greenland dataset, or other reference data. This opens the possibility to better assess the temporal resolution and palaeoclimate potential of loess-palaeosol sequences in recording supra-regional climate patterns, as well as to securely integrate loess with other chronologically better-resolved palaeoclimate records.

4.
Sci Rep ; 7(1): 5848, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28725004

RESUMO

Understanding the past dynamics of large-scale atmospheric systems is crucial for our knowledge of the palaeoclimate conditions in Europe. Southeastern Europe currently lies at the border between Atlantic, Mediterranean, and continental climate zones. Past changes in the relative influence of associated atmospheric systems must have been recorded in the region's palaeoarchives. By comparing high-resolution grain-size, environmental magnetic and geochemical data from two loess-palaeosol sequences in the Lower Danube Basin with other Eurasian palaeorecords, we reconstructed past climatic patterns over Southeastern Europe and the related interaction of the prevailing large-scale circulation modes over Europe, especially during late Marine Isotope Stage 3 (40,000-27,000 years ago). We demonstrate that during this time interval, the intensification of the Siberian High had a crucial influence on European climate causing the more continental conditions over major parts of Europe, and a southwards shift of the Westerlies. Such a climatic and environmental change, combined with the Campanian Ignimbrite/Y-5 volcanic eruption, may have driven the Anatomically Modern Human dispersal towards Central and Western Europe, pointing to a corridor over the Eastern European Plain as an important pathway in their dispersal.

5.
Sci Rep ; 6: 36334, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27824102

RESUMO

Loess-palaeosol sequences are valuable archives of past environmental changes. Although regional palaeoclimatic trends and conditions in Southeastern Europe have been inferred from loess sequences, large scale forcing mechanisms responsible for their formation have yet to be determined. Southeastern Europe is a climatically sensitive region, existing under the strong influence of both Mediterranean and continental climates. Establishment of the spatial and temporal evolution and interaction of these climatic areas is essential to understand the mechanisms of loess formation. Here we present high-resolution grain-size, environmental magnetic, spectrophotometric and geochemical data from the Stalac section in the Central Balkans (Serbia) for the past ~350,000 years. The goal of this study is to determine the influence of the Mediterranean climate during this period. Data show that the Central Balkans were under different atmospheric circulation regimes, especially during Marine Isotope Stages 9 and 7, while continental climate prevailed further north. We observe a general weakening of the Mediterranean climate influence with time. Our data suggest that Marine Isotope Stage 5 was the first interglacial in the Central Balkans that had continental climate characteristics. This prominent shift in climatic conditions resulted in unexpectedly warm and humid conditions during the last glacial.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA