Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37049099

RESUMO

In this study, heat-treated and multisurface engineered DIN 1.2367 tool steel was subjected to room and elevated temperature wear tests, and the effect of nitriding on its tribological behavior was investigated. CrN, AlTiN, and CrN/AlTiN coatings with a total thickness of 2 µm were obtained by arc cathodic physical vapor deposition on conventional heat-treated and gas-nitrided steels. The white layer formed during nitriding was removed, and a diffusion layer (100 µm) was achieved in the cross section of the steel having a tempered martensitic matrix. The highest surface hardness was attained with an integral coating (CrN/AlTiN), and surface hardness increased even more after nitriding due to the formation of a multicomponent ceramic layer on top of the diffusion layer. The room temperature wear tests performed against an alumina counterpart revealed that (i) CrN/AlTiN-coated steel had the highest friction coefficient of 0.26, which further increased to 0.33 by nitriding due to the increase in shear strength, and that (ii) with increasing surface hardness, the specific wear rates (W) of the heat-treated and coated steels could be ranked as follows: WCrN/AlTiN < WAlTiN < WCrN. The wear rates decreased when nitriding was carried out prior to coating. In order to simulate the aluminum extrusion conditions, hot wear behavior of the surfaces against AA6080 alloy at 450 °C was investigated. The hot wear tests revealed that (i) high friction coefficients were reached due to the adhesive characteristic of aluminum to the surfaces, (ii) the nitrided and CrN/AlTiN-coated sample exhibited the lowest wear rate among all studied surfaces, and (iii) the film damage on the worn surfaces mostly occurred in the form of droplet delamination.

2.
J Funct Biomater ; 12(4)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34842727

RESUMO

In this study, we assessed the outcomes after surgical treatment of thoracic post-excision defects in 15 patients, using TiNi knitted surgical meshes and customized artificial TiNi-based ribs. METHODS: Eight patients were diagnosed with advanced non-small cell lung cancer (NSCLC) invading the chest wall, of which five patients were T3N0M0, two were T3N1M0, and one was T3N2M0. Squamous cell carcinoma was identified in three of these patients and adenocarcinoma in five. In two cases, chest wall resection and repair were performed for metastases of kidney cancer after radical nephrectomy. Three-dimensional CT reconstruction and X-ray scans were used to plan the surgery and customize the reinforcing TiNi-based implants. All patients received TiNi-based devices and were prospectively followed for a few years. RESULTS: So far, there have been no lethal outcomes, and all implanted devices were consistent in follow-up examinations. Immediate complications were noted in three cases (ejection of air through the pleural drains, paroxysm of atrial fibrillation, and pleuritis), which were conservatively managed. In the long term, no complications, aftereffects, or instability of the thoracic cage were observed. CONCLUSION: TiNi-based devices used for extensive thoracic lesion repair in this context are promising and reliable biomaterials that demonstrate good functional, clinical, and cosmetic outcomes.

3.
Materials (Basel) ; 14(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445621

RESUMO

Impulse Friction Stir Welding (IFSW) was utilized to join 6082-T6 alloy plates at various impulse frequencies. A distinctive feature of IFSW is the generation of mechanical impulses that enhances the forging action of the tool, and thereby, alters the weld microstructure. The microstructural evolution in the Stir Zone (SZ) with special focus on the strengthening precipitation behavior, and overall mechanical properties of the IFSW joints have been investigated. It was demonstrated that the strengthening ß″ precipitates reprecipitated in the SZ of the IFSW joints during natural aging. In contrast, no precipitates were found in the SZ of the Friction Stir Welding (FSW) weld. Partial reversion of ß″ after IFSW is supposed to occur due to more developed subgrain network and higher dislocation density introduced by impulses that accelerated precipitation kinetics. Dynamic recrystallisation was facilitated by impulses resulting in a fine, homogeneous structure. There was no significant difference between the microhardness in the SZ, tensile and yield strength of the FSW and IFSW joints. However, the application of impulses demonstrated the smoothing of the hardness reduction in the transition region at the advancing side. The shift of the fracture location from the Heat-Affected Zone (HAZ) by FSW to the SZ as well as higher elongation of the joints by IFSW of lower frequencies could be related to the grain refinement and the change of the grain orientation.

4.
Materials (Basel) ; 14(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466504

RESUMO

This paper describes the microstructure and properties of titanium-based composites obtained as a result of a reactive spark plasma sintering of a mixture of titanium and nanostructured (Ti,Mo)C-type carbide in a carbon shell. Composites with different ceramic addition mass percentage (10 and 20 wt %) were produced. Effect of content of elemental carbon covering nc-(Ti,Mo)C reinforcing phase particles on the microstructure, mechanical, tribological, and corrosion properties of the titanium-based composites was investigated. The microstructural evolution, mechanical properties, and tribological behavior of the Ti + (Ti,Mo)C/C composites were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), electron backscatter diffraction analysis (EBSD), X-ray photoelectron spectroscopy (XPS), 3D confocal laser scanning microscopy, nanoindentation, and ball-on-disk wear test. Moreover, corrosion resistance in a 3.5 wt % NaCl solution at RT were also investigated. It was found that the carbon content affected the tested properties. With the increase of carbon content from ca. 3 to 40 wt % in the (Ti,Mo)C/C reinforcing phase, an increase in the Young's modulus, hardness, and fracture toughness of spark plasma sintered composites was observed. The results of abrasive and corrosive resistance tests were presented and compared with experimental data obtained for cp-Ti and Ti-6Al-4V alloy without the reinforcing phase. Moreover, it was found that an increase in the percentage of carbon increased the resistance to abrasive wear and to electrochemical corrosion of composites, measured by the relatively lower values of the friction coefficient and volume of wear and higher values of resistance polarization. This resistance results from the fact that a stable of TiO2 layer doped with MoO3 is formed on the surface of the composites. The results of experimental studies on the composites were compared with those obtained for cp-Ti and Ti-6Al-4V alloy without the reinforcing phase.

5.
Environ Sci Pollut Res Int ; 28(6): 7307-7321, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33029773

RESUMO

Surfactants are widely used in many chemical industries and as primary components of cleaning detergents due to their specific characteristics, which in turn results in high pollution of domestic and industrial wastewaters by such substances. In this study, the mechanistic pathways of the adsorption of cationic benzyl-dimethyl-dodecyl ammonium bromide (BDDAB) and anionic sodium dodecyl sulfate (SDS) surfactants on kaolinite clay in water were investigated. The results showed that the adsorption of anionic surfactant (SDS) on kaolinite is better compared with cationic surfactant (BDDAB), wherein the ♦maximum adsorption capacity was found 161.4 µmol g-1 and 234 µmol g-1 for BDDAB and SDS, respectively. Adsorption kinetics were the best suited to pseudo-second-order model for both BDDAB and SDS with an adsorption rate constant of 0.028 g µmol-1 min-1 and 0.023 g µmol-1 min-1, respectively. Meanwhile, the adsorption of BDDAB by kaolinite showed that the isotherm adsorption tended to follow the Langmuir-Freundlich and Freundlich isotherm models. However, the SDS adsorption isotherm obeyed only the Langmuir-Freundlich model.


Assuntos
Caulim , Poluentes Químicos da Água , Adsorção , Cinética , Dodecilsulfato de Sódio , Tensoativos , Água
6.
Biomed Mater ; 16(2): 021001, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-32629431

RESUMO

Intermetallic porous SHS-TiNi alloys exhibit tangled and specific stress-strain characteristics. This article aims to evaluate the findings emanating from experiments using standard and proprietary instruments. Fatigue testing under repeated complex loading was used to measure the total number of load cycles before failure of the SHS-TiNi samples occurred. Of the tested samples, seventy percent passed through 106 cycles without failure due to the reversible martensite transformation in the TiNi phase, one of the prevailing constituents of a multiphase matrix. The fractured surfaces were analyzed using scanning electron microscopy and confocal laser scanning instruments. Microscopy studies showed that the entire surface of the sample is concealed by miscellaneous strata that result from the SHS processand effectively protect the porous alloy in a corrosive environment. Numerous non-metallic inclusions, which are also attributed to the SHS reaction, do not have a significant impact on the deformation behavior and fatigue performance. In this context, the successful in vivo functioning of porous grafts assessed in a canine rib-plasty model allows the bone substitute to be congruentially deformed in the body without rejection or degradation; it thus has a long operational life, often greater than 17 ×106 (22 × 60 × 24 × 540) cycles. It acknowledges the potential benefits of SHS-TiNi as a superior osteoplastic material and its high resistance to corrosion fatigue.


Assuntos
Ligas , Substitutos Ósseos/química , Ligas Dentárias/química , Teste de Materiais , Níquel/química , Costelas/fisiopatologia , Resistência à Tração , Titânio/química , Animais , Corrosão , Cães , Elasticidade , Temperatura Alta , Masculino , Microscopia Confocal , Microscopia Eletrônica de Varredura , Porosidade , Pós , Costelas/metabolismo , Resistência ao Cisalhamento , Estresse Mecânico , Viscosidade , Difração de Raios X
7.
Materials (Basel) ; 13(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105862

RESUMO

The microstructural and functional behavior of TiNi-based wires with a silver content of 0-1.5 at.% was evaluated. The concentration range for Ag doping determined for the TiNi wires with potential for the medical industry was 0-0.2 at.%. Microstructure analysis of TiNi wires with different silver contents at room temperature indicated a multiphase structural state. Various internal structures with tangled grain boundaries were formed by intense plastic deformation. The nanocrystalline structure and phase state of wire with the minimum silver content (0.1 at.% Ag) provide full shape recovery, the greatest reversible strain, and optimal strength and ductility. TiNi ingots with a high Ag content (0.5-1.5 at.%) cracked under minimum load due to excess silver that crystallized along the grain boundaries and broke cohesion bonds between the TiNi grains.

8.
Materials (Basel) ; 12(24)2019 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-31847433

RESUMO

The objective of this study was to investigate the effect of the high welding speed on the mechanical properties and their relations to microstructural characteristics of butt friction stir welded joints with the use of 6082-T6 aluminum alloy. The aluminum sheets of 2.0 mm thick were friction stir welded at low (conventional FSW) and high welding speeds (HSFSW) of 200 and 2500 mm/min, respectively. The grain size in the nugget zone (NZ) was decreased; the width of the softened region was narrowed down as well as the lowest microhardness value located in the heat-affected zone (HAZ) was enhanced by HSFSW. The increasing welding speed resulted in the higher ultimate tensile strength and lower elongation, but it had a slight influence on the yield strength. The differences in mechanical properties were explained by analysis of microstructural changes and tensile fracture surfaces of the welded joints, supported by the results of the numerical simulation of the temperature distribution and material flow. The fracture of the conventional FSW joint occurred in the HAZ, the weakest weld region, while all HSFSW joints raptured in the NZ. This demonstrated that both structural characteristics and microhardness distribution influenced the actual fracture locations.

9.
Materials (Basel) ; 12(15)2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31357702

RESUMO

Porous TiNi alloys fabricated by self-propagating high-temperature synthesis (SHS) are biomaterials designed for medical application in substituting tissue lesions and they were clinically deployed more than 30 years ago. The SHS process, as a very fast and economically justified route of powder metallurgy, has distinctive features which impart special attributes to the resultant implant, facilitating its integration in terms of bio-mechanical/chemical compatibility. On the phenomenological level, the fact of high biocompatibility of porous SHS TiNi (PTN) material in vivo has been recognized and is not in dispute presently, but the rationale is somewhat disputable. The features of the SHS TiNi process led to a multifarious intermetallic Ti4Ni2(O,N,C)-based constituents in the amorphous-nanocrystalline superficial layer which entirely conceals the matrix and enhances the corrosion resistance of the unwrought alloy. In the current article, we briefly explore issues of the high biocompatibility level on which additional studies could be carried out, as well as recent progress and key fields of clinical application, yet allowing innovative solutions.

10.
J Funct Biomater ; 10(3)2019 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-31252637

RESUMO

Repairs of orbital post-traumatic and extensive malignant defects remain a major surgical challenge, in view of follow-up outcomes. Incorrect surgical management of injured facial structures results in cosmetic, ophthalmic, and social aftereffects. A custom-made knitted TiNi-based mesh (KTNM) endograft was employed to overcome post-surgical complications and post-resected lesions of the orbital area. Preoperative high-resolution computed tomography (CT) imaging and CAD modelling were used to design the customized KTNM in each case. Twenty-five patients underwent surgery utilizing the suggested technique, from 2014 to 2019. In all documented cases, resolution of the ophthalmic malfunction was noted in the early period. Follow-up observation evidenced no relapsed enophthalmos, hypoglobus, or diplopia as late complications. The findings emanating from our clinical observations allow us to claim that the KTNM indicated a high level of biocompatibility. It is simply modified intraoperatively to attach any desired shape/size for implantation and can also be screw-fixed, providing a good supporting ability. The KTNM precisely renders orbitozygomatic outlines and orbital floor, thus recovering the anatomical structure, and is regarded as an attractive alternative to Ti-based meshes and plates. Additionally, we report one of the studied cases, where good functional and cosmetic outcomes have been achieved.

11.
Materials (Basel) ; 10(2)2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28772516

RESUMO

MAX phases (M = transition metal, A = A-group element, and X = C/N) are of special interest because they possess a unique combination of the advantages of both metals and ceramics. Most attention is attracted to the ternary carbide Cr2AlC because of its excellent high-temperature oxidation, as well as hot corrosion resistance. Despite lots of publications, up to now the influence of bias voltage on the chemical bonding structure, surface morphology, and mechanical properties of the film is still not well understood. In the current study, Cr-Al-C films were deposited on silicon wafers (100) and Inconel 718 super alloy by dc magnetron sputtering with different substrate bias voltages and investigated using Scanning Electron Microscopy (SEM), X-ray Photoelectron Spectroscopy (XPS), X-ray Diffraction (XRD), Atomic Force Microscopy (AFM), and nanoindentation. Transmission Electron Microscopy (TEM) was used to analyze the correlation between the growth of the films and the coating microstructure. The XPS results confirm the presence of Cr2AlC MAX phase due to a negative shift of 0.6-0.9 eV of the Al2p to pure aluminum carbide peak. The XRD results reveal the presence of Cr2AlC MAX Phase and carbide phases, as well as intermetallic AlCr2. The film thickness decreases from 8.95 to 6.98 µm with increasing bias voltage. The coatings deposited at 90 V exhibit the lowest roughness (33 nm) and granular size (76 nm) combined with the highest hardness (15.9 GPa). The ratio of Al carbide to carbide-like carbon state changes from 0.12 to 0.22 and correlates with the mechanical properties of the coatings. TEM confirms the columnar structure, with a nanocrystalline substructure, of the films.

12.
Materials (Basel) ; 10(5)2017 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-28772923

RESUMO

In the current study, the properties of the CrxN coatings deposited on the Inconel 718 superalloy using direct current reactive magnetron sputtering are investigated. The influence of working pressure on the microstructure, mechanical, and tribological properties of the CrxN coatings before and after high-temperature hydrogen exposure is studied. The cross-sectional scanning electron micrographs indicate the columnar structure of the coatings, which changes from dense and compact columns to large columns with increasing working pressure. The Cr/N ratio increases from 1.4 to 1.9 with increasing working pressure from 300 to 900 mPa, respectively. X-ray diffraction analysis reveals a change from mixed hcp-Cr2N and fcc-CrN structure to approximately stoichiometric Cr2N phase. After gas-phase hydrogenation, the coating deposited at 300 mPa exhibits the lowest hydrogen absorption at 600 °C of all investigated coatings. The results indicate that the dense mixed cubic and hexagonal structure is preferential for hydrogen permeation resistance due to the presence of cubic phase with higher packing density in comparison to the hexagonal structure. After hydrogenation, no changes in phase composition were observed; however, a small amount of hydrogen is accumulated in the coatings. An increase of coating hardness and elastic modulus was observed after hydrogen exposure. Tribological tests reveal that hydrogenation leads to a decrease of the friction coefficient up to 20%-30%. The best value of 0.25 was reached for hydrogen exposed CrxN coating deposited at 300 mPa.

13.
Polymers (Basel) ; 9(12)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30966035

RESUMO

The scaffolds made of polycaprolactone (PCL) are actively employed in different areas of biology and medicine, especially in tissue engineering. However, the usage of unmodified PCL is significantly restricted by the hydrophobicity of its surface, due to the fact that its inert surface hinders the adhesion of cells and the cell interactions on PCL surface. In this work, the surface of PCL nanofibers is modified by Ar/CO2/C2H4 plasma depositing active COOH groups in the amount of 0.57 at % that were later used for the immobilization of platelet-rich plasma (PRP). The modification of PCL nanofibers significantly enhances the viability and proliferation (by hundred times) of human mesenchymal stem cells, and decreases apoptotic cell death to a normal level. According to X-ray photoelectron spectroscopy (XPS), after immobilization of PRP, up to 10.7 at % of nitrogen was incorporated into the nanofibers surface confirming the grafting of proteins. Active proliferation and sustaining the cell viability on nanofibers with immobilized PRP led to an average number of cells of 258 ± 12.9 and 364 ± 34.5 for nanofibers with ionic and covalent bonding of PRP, respectively. Hence, our new method for the modification of PCL nanofibers with PRP opens new possibilities for its application in tissue engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA