Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1348999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660226

RESUMO

Introduction: The plasticity of the nervous system plays a crucial role in shaping adaptive neural circuits and corresponding animal behaviors. Understanding the mechanisms underlying neural plasticity during development and its implications for animal adaptation constitutes an intriguing area of research. Sea urchin larvae offer a fascinating subject for investigation due to their remarkable evolutionary and ecological diversity, as well as their diverse developmental forms and behavioral patterns. Materials and methods: We conducted immunochemical and histochemical analyses of serotonin-containing (5-HT-neurons) and dopamine-containing (DA-positive) neurons to study their developmental dynamics in two sea urchin species: Mesocentrotus nudus and Paracentrotus lividus. Our approach involved detailed visualization of 5-HT- and DA-positive neurons at gastrula-pluteus stages, coupled with behavioral assays to assess larval upward and downward swimming in the water column, with a focus on correlating cell numbers with larval swimming ability. Results: The study reveals a heterochronic polymorphism in the appearance of post-oral DA-positive neuroendocrine cells and confirms the stable differentiation pattern of apical 5-HT neurons in larvae of both species. Notably, larvae of the same age exhibit a two- to four-fold difference in DA neurons. An increased number of DA neurons and application of dopamine positively correlate with larval downward swimming, whereas 5-HT-neurons and serotonin application induce upward swimming. The ratio of 5-HT/DA neurons determines the stage-dependent vertical distribution of larvae within the water column. Consequently, larvae from the same generation with a higher number of DA-positive neurons tend to remain at the bottom compared to those with fewer DA-positive neurons. Discussion: The proportion of 5-HT and DA neurons within larvae of the same age underlies the different potentials of individuals for upward and downward swimming. A proposed model illustrates how coordination in humoral regulation, based on heterochrony in DA-positive neuroendocrine cell differentiation, influences larval behavior, mitigates competition between siblings, and ensures optimal population expansion. The study explores the evolutionary and ecological implications of these neuroendocrine adaptations in marine species.

2.
ACS Chem Neurosci ; 10(8): 3888-3899, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31291540

RESUMO

Serotonin (5-HT) is a key player in many physiological processes in both the adult organism and developing embryo. One of the mechanisms for 5-HT-mediated effects is covalent binding of 5-HT to the target proteins catalyzed by transglutaminases (serotonylation). Despite the implication in a variety of physiological processes, the involvement of serotonylation in embryonic development remains unclear. Here we tested the hypothesis that 5-HT serves as a substrate for transglutaminase-mediated transamidation of the nuclear proteins in the early embryos of both vertebrates and invertebrates. For this, we demonstrated that the level of serotonin immunoreactivity (5-HT-ir) in cell nuclei increases upon the elevation of 5-HT concentration in embryos of sea urchins, mollusks, and teleost fish. Consistently, pharmacological inhibition of transglutaminase activity resulted in the reduction of both brightness and nuclear localization of anti-5-HT staining. We identified specific and bright 5-HT-ir within nuclei attributed to a subset of different cell types: ectodermal and endodermal, macro- and micromeres, and blastoderm. Western blot and dot blot confirmed the presence of 5-HT-ir epitopes in the normal embryos of all the species examined. The experimental elevation of 5-HT level led to the enhancement of 5-HT-ir-related signal on blots in a species-specific manner. The obtained results demonstrate that 5-HT is involved in transglutaminase-dependent monoaminylation of nuclear proteins and suggest nuclear serotonylation as a possible regulatory mechanism during early embryonic development. The results reveal that this pathway is conserved in the development of both vertebrates and invertebrates.


Assuntos
Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/fisiologia , Serotonina/metabolismo , Transglutaminases/metabolismo , Animais , Moluscos , Ouriços-do-Mar , Peixe-Zebra
3.
Biol Bull ; 234(3): 192-206, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29949436

RESUMO

Although understanding of the neuronal development of Trochozoa has progressed recently, little attention has been paid to freshwater bivalves, including species with a strong ecological impact, such as the zebra mussel (Dreissena polymorpha). Therefore, an important question might concern how the developing nervous system is involved in the formation of the rapid and successful invasive behavior of this species. Our aim was to reveal the neuronal development of trochophore and veliger larvae of Dreissena, with special attention to the organization of sensory structures and their possible involvement in detecting environmental cues. After applying serotonin and FMRFamide immunocytochemistry, the first serotonin immunoreactive sensory elements appeared 16-18 hours after fertilization, whereas the first FMRFamide immunoreactive sensory cell was seen only at 32 hours of development (trochophore stage). Later, sensory elements were found in three parts of the larval body, including the apical organ, the posterior region, and the stomach. Although differences in the timing of appearance and the morphology of cells were observed, the two signaling systems showed basic similarity in their organization pattern until the end of the veliger stage. Pharmacological, physiological, and quantitative immunocytochemical investigations were also performed, suggesting the involvement of both the serotoninergic system and the FMRFamidergic system in sensomotor processes. Manipulation of the serotonin synthesis by para-chloroplenylalanine and 5-hydroxytryptophane, as well as application of increased salinity, influenced larval swimming activity, both accompanied by changes in immunofluorescence intensity. We concluded that these two early sensory systems may play an important role in the development of settlement competency of this biofouling invasive bivalve, Dreissena.


Assuntos
Comportamento Animal/fisiologia , Dreissena/citologia , Dreissena/fisiologia , Espécies Introduzidas , Natação , Animais , Dreissena/crescimento & desenvolvimento , Larva , Sistema Nervoso/crescimento & desenvolvimento , Células Receptoras Sensoriais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA